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1. Introduction 

Beef is one of the commodities that are quite high in consumption in Indonesia and pork is a 
commodity that is low enough to be consumed by the people of Indonesia.[1]. However, in some 
areas, the level of pig production is relatively high, one of which is in the Province of Bali, with the 
high production of pigs in Bali affecting the consumption of pork in Bali.[2]. At first glance, beef and 
pork look the same in terms of color and texture. With the use of Image Processing technology, it 
can be used to introduce beef and pork through the image of the two types of meat. Identification 
of beef and pork images can be identified based on color and texture. Research related to meat 
identification has been carried out by[3], where the meat image is identified by feature extraction 
method Gray Level Co-Occurrence Matrix (GLCM). The classification of meat images is carried out 
based on features and pixel spacing. The GLCM feature extraction process requires high computing, 
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 Objective:  Identify images of beef and pork using texture feature 
extraction Gray Level Co-Occurrence Matrix and Probabilistic Neural 
Network classification algorithm. 

Design/method/approach: Apply texture feature extraction to Gray 
Level Co-Occurrence Matrix and Probabilistic Neural Network Classifier 
to perform classification. 

Results:  From the test results with k-fold cross-validation and confusion 
matrix, it shows that feature extraction of Gray Level Co-Occurrence 
Matrix and Probabilistic Neural Network Classifier get an average 
accuracy of 87%, precision 83%, and recall 90%. 

Authenticity/state of the art:  In this study, several scenarios were 
tested, namely the effect of using resize, brightness, and rotate values. 
Using a resize value of 256 x 256 pixels from the test results got the best 
accuracy of 87%. The brightness test of 20% affects the accuracy rate of 
86% on increasing brightness and 90% on reducing brightness. In 
contrast, the test on the rotated image does not affect the accuracy 
results. The average accuracy obtained is 87%. The data in this study 
were obtained by collecting primary data on images of beef and pork in 
several markets in Denpasar. 
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so the image is first converted into a grayscale or gray degree image[4]. From the study results with 
a total of 1800 data and four classes of meat, the best accuracy was 87.5%, with an image taking 
distance of 20 cm and a neighboring pixel distance of d=2. GLCM has also been proven to analyze 
image textures in other studies[5] that identify beef and pork-based on texture. The test results 
obtained an accuracy of 88.75% without a background and an accuracy of 73.75%. Research related 
to the classification of types of meat has been carried out in several studies with various methods 
such as SVM[3] with an accuracy of 87.5% and KNN [5]with the obtained accuracy of 88.75%. 
Another classification method that can be applied is the Probabilistic Neural Network (PNN). 
According to[6], PNN is reliable in classifying images, especially color images with texture 
characteristics. PNN was chosen because it does not require a large dataset in the learning stage and 
fast data processing, so it does not require a repeated training process (iteration) to improve the 
smoothing parameters used to identify classes from data.[7]. However, a Probabilistic Neural 
Network has a problem determining smoothing parameters usually used by trial and error or user-
defined to get the best accuracy.[8]. Research related to meat classification has been carried out 
with a combination of GLCM and PNN[9] for beef freshness classification, the accuracy obtained is 
75% using 80 datasets. Other research was also conducted by[10] to classify fish species using 141 
datasets, with an accuracy obtained of 89.65%.  

Based on the problems that have been described regarding the identification and classification 
of meat images, the application of GLCM feature extraction for the identification process of meat 
images by utilizing a combination of pixel spacing and six texture features, namely dissimilarity, 
correlation, homogeneity, contrast, ASM, and energy to obtain texture characteristics in the image. 
meat [3]. PNN was applied as a classification method for beef and pork. 

2. Method 

The research method used is a quantitative method. The stages in this research are 
preprocessing, feature extraction of texture features with Gray Level Co-Occurrence Matrix, and 
classification using Probabilistic Neural Network. The stages of research to be carried out in this study 
can be seen in Figure 1. 

 

Fig. 1. Stages of this research 

2.1. Data Collection 

The source of the image of beef and pork is obtained by buying beef and pork from several 
markets in Denpasar, namely the Badung traditional market, Pepito Renon, and Tiara Dewata 
Supermarket. Then the primary data collection to get the input image, beef and pork were 
photographed using a Canon DSLR (EOS) camera with a zooming camera setting of 4 (four) times 
magnification and an image taking distance of 20 cm to get the overall surface texture of the meat 
without any background. And with lighting conditions in the room during the day. At the purchase 
of each meat, the meat is then cut into several pieces before the image-taking process is carried out 
and the meat used does not go through a washing process, this aims to get the original color of the 
two meats. The process of taking images of meat with one piece of meat is shooting images with 
four degrees of camera rotation, namely from 00, 450,900, and 1350, the image is also taken on the 
opposite side of the meat in the same position. Image taking is done for two days on the same meat 
to get freshness and color on the texture of the meat, then buy new meat to get the next image of 
the meat. The image data is then labeled manually, namely label 0 for the image of a cow and label 
1 for the image of a pig. Image data obtained as many as 400 data consisting of 200 images of beef 



ISSN 2722-4139 
Computing and Information Processing Letters 

19 
Vol. 1., No. 1, Novmber 2021, pp. 17-24 

  

 Magdalena et al. (Identification of Beef and Pork using Gray Level Co-occurrence Matrix) 

and 200 images of pork. The dataset will be divided into 80% training data, and 20% test data. The 
results of the image dataset of meat that have been labeled with the process can be seen in Table 1. 

Table 1.  Grayscale Results 

Doc Review Label  
1 

 

0 (Cow) 

2 

 

1 (Pig) 

 

2.2. Image Preprocessing 

Preprocessing is the initial stage for object recognition in the image before entering the feature 
extraction stage using a gray level co-occurrence matrix. The raw image data that was first collected 
has a variety of sizes so it is necessary to carry out a preprocessing stage to homogenize the image 
data before entering the feature extraction process. Pre-processing is carried out in several stages, 
namely resizing the image to 256 x 256 pixels, converting HSV images for color segmentation of meat 
images and converting Grayscale images or grayscale forms (Grayscale).[11]. The results of the 
preprocessing process can be seen in Figure 2. 

 

Fig. 2. Preprocessing Results 1a) Normal Image, 1b) Zoom in Normal Image, 2a) Resize , 2b) Zoom in Resize, 
3a) HSV 3b) Zoom in HSV, 4a) Grayscale and 4b) Zoom in Grayscale 

2.3. GLCM Feature Feature Extraction 

Extraction of texture features is done to get the characteristic value of texture features in 
grayscale images. In this study, the GLCM matrix is made with four corner directions, namely the 
angle of 00 450 ,900, and 1350 and the distance of neighboring pixels used is 1. Furthermore, the six 
features of the Haralick texture include Dissimilarity, Correlation, Homogeneity, Contrast, ASM and 
Energy will be calculated based on the four corners. 

The equation of Haralick can be seen in equation (1) – (6) [12] : 

𝐷𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =   ∑ ∑ |𝑖 − 𝑗|𝑔(𝑖, 𝑗)𝑗𝑖   (1) 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =  ∑ ∑
(𝑖−𝜇𝑖) (𝑗−𝜇𝑗) 

√𝜎𝑖2  𝜎𝑖2
𝑗𝑖  𝑔(𝑖,𝑗)   (2) 

𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑖𝑡𝑦 =  ∑ ∑
𝑔(𝑖,𝑗)

1+ (𝑖−𝑗)2 𝑔(𝑖, 𝑗)𝑗𝑖    (3) 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =   ∑ ∑ |𝑖 − 𝑗|2𝑔(𝑖, 𝑗)𝑗𝑖   (4) 

𝐴𝑛𝑔𝑢𝑙𝑎𝑟 𝑆𝑒𝑐𝑜𝑛𝑑 𝑀𝑜𝑚𝑒𝑛𝑡(𝐴𝑆𝑀) =   ∑ ∑ 𝑔(𝑖, 𝑗)2
𝑗𝑖   (5) 

𝐸𝑛𝑒𝑟𝑔𝑦 =  √∑ ∑ 𝑔(𝑖, 𝑗)2
𝑗𝑖    (6) 

1a 2a 3a 4a 

1b 2b 3b 4b 
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The calculation results from GLCM texture feature extraction can be seen in Table 2.  

Table 2.  GLCM feature calculation results 

 Dissimilarity Correlation Homogeneity Contrast ASM Energy 

00 5.90252757352 0.85261982486 0.21205137751 74.900597426470 0.00084225335 0.029021601605 

450 6.50871203383 0.82551804970 0.1930639160 88.504313725490 0.00076142340 0.027593901641 

900 5.32573529411 0.87870257691 0.22950861147 61.611580882357 0.00091915319 0.030317539446 

1350 6.97196462898 0.80547674271 0.18333365535 98.670111495579 0.00070804270 0.026609077181 

 

2.4. PNN (Probailistic Neural Network) Classifier 

The PNN (Probailistic Neural Network) Classifier method is a method used for image classification 
purposes because it does not require large datasets in the learning stage and fast data processing, 
so there is no need for repeated training processes (iterations) to improve parameters (smoothing 
parameters) which will be used to identify the class of data [7] This method is a clastic probabilistic 
method that applies the Bayesian Theorem [13]. According to Haykin, 1994 said probabilistic neural 
network consists of three layers [14] : 
1. Input Layer or the input data layer from the result of feature feature extraction. 
2. Pattern Layeris a layer for receiving data from the input layer to be processed, namely by adding 

up the contributions for each input data which will produce a PNN network output vector. 
Equation (7) is an equation to calculate the value of the pattern layer 

𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝐿𝑎𝑦𝑒𝑟 =  
1

2𝜋
𝑚
𝜎

  𝐸𝑥𝑝
||𝑥−𝑊𝑖𝑗||

2

2𝜎2    (7) 

3. Summation Layeris an output node in the form of a binary that produces a classification decision, 
namely by taking the maximum probability and producing a value of 0 for the cow class and 1 for 
the pig class. Equation (8) is an equation for calculating the summation layer value. 

𝑆𝑢𝑚𝑚𝑎𝑡𝑖𝑜𝑛 𝐿𝑎𝑦𝑒𝑟 =
1

(2𝜋)
𝑚
2 𝜎𝑚|𝑇𝑘|

 ∑ 𝑒𝑥𝑝 [−
∑ ||𝑥−𝑊𝑖𝑗||

2𝑚
𝑗=1

(2𝜎2)
]

𝑇𝑘
𝑖=1   (8) 

Information : 
i = Number of classes 
j = Number of patterns 
Wij= jth training vector of class i 
x = Test vector  
Mi = Number of Features 
Kindergarten = Total Training = Smoothing Parameter/Standard deviation 

 
Table 3 shows the results of the probabilistic neural network calculations where the output 

results are adjusted based on the class with the largest total gaussian value used as the final output 
of the identification of the image data.  

Table 3.  PNN Classification 

Image 
Total Gaussian Value 

Results 
Cow Pig 

 

2.5362E-35 

 

3.53492E-38 

 
Beef 

 

4.0671E-36 

 
1.86276E-34 

 
Pork 
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2.5. K-Fold Cross Validation 

K-Fold Cross Validationis one method of validating the accuracy of a system. In this method the 
dataset is divided into a number of n-fold partitions at random, then iterating over the data that has 
been divided into training data and test data alternately. 

2.6. Confusion Matrix 

Confusion Matrix is one of the methods used to measure the level of performance of a system in 
classifying data. Confusion Matrix will provide comparison results between the classification results 
carried out by the model and the actual classification results. The confusion matrix table can be seen 
in Figure 3. 

Predicted 

Values 

Actual Values 

Positive negative 

Positive True Positive (TP) False Positive (FP) 

negative False Negative (FN) True Negative (TN) 

Fig. 3. Confusion Matrix 

2.7. Receiver Operating Characteristics (ROC) Curve 

ROC curve is used to visualize and test the performance of a classification model[15]. The ROC 
curve is plotted on a graph with a true positive rate (sensitivity) value on the Y axis and a false positive 
rate (1-sensitivity) value on the Y axis. [16]. TPR (sensitivity) is used to measure the proportion of 
“true positives” that are correctly identified while PFR is used to measure the proportion of “true 
negatives” that are correctly identified. The accuracy of the ROC classification is done by calculating 
the area under the ROC curve or what is called the AUC (Area Under Curva) [17]. 

3. Results and Discussion 

The test is carried out using 400 datasets with the evaluation method of k-fold cross-validation 
using a value of k = 5, which means that there are five tests on the dataset with random data. In each 
k iteration, there are training data and test data with the distribution of the dataset 80% of the test 
data and 20% of the training data. Then the next test uses a confusion matrix by calculating the 
accuracy, precision, and recall values in each fold and getting the average value. The last test uses 
the ROC curve by calculating the area of the carrying area curve or AUC. 

3.1. Test K-Fold Cross Validation, Confusion Matrix, and ROC Curve 

Table 4 is the test result of k-fold cross validation where there are five folds or five tests where 
there are 80 data in each fold with a 50:50 division of beef and pork data. Test results usingk-fold with 
a value of k = 5 proven to be able to classify meat data with an accuracy of 87%, wherein each fold 
there are tests on actual data and predictive data as in fold 1 there are 31 beef data that are predicted 
to be correct as beef and 9 beef data which was predicted as pork, as well as 4 pork which was predicted 
as beef, and 36 pork which was predicted correctly as pork, the results of the next fold test can be seen 
in table 4. 

Table 4.  K-fold Cross Validation Test 

Label 

0 (Cow) 

1 (Pig) 

Prediction 

fold 1 Fold 2 fold 3 Fold 4 Fold 5 

0 1 0 1 0 1 0 1 0 1 

current 
0 31 9 35 5 37 3 30 10 34 6 

1 4 36 8 32 3 37 2 38 1 39 

 

The confusion matrix is a test method to measure the accuracy of the GLCM and PNN models 
based on the values of True Positive (TP), False Positive (FP), True Negative (TN), and False Negative 
(FN). Based on the confusion matrix test results, the results of accuracy, precision, and recall can be 
seen in Table 5. 
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Table 5.  Confusion matrix test 

Accuracy Precision Recall 

87% 83% 90% 

Figure 4 shows the results of testing the ROC curve by calculating the AUC value in the meat 
classification model using five-fold cross-validation. 0.872. 

 

Fold AUC 

1  0.84 

2  0.84 

3  0.92 

4  0.85 

5  0.91 

Average  0.872 
 

Fig. 4. ROC curve test results 

3.2. Test value resize, brightness, rotate 

In this section, testing is carried out on the selection of resizing values to obtain the best accuracy. 
Resize referred in this study is to change the size of the image to a certain size by equating the length 
and width of the image. The resize values used in this test are 16 x 16 pixels, 32 x 32 pixels, 64 x 64 
pixels, 128 x 128 pixels, 256 x 256 pixels, and 512 x 512 pixels. From the overall test of the resize 
values in table 6 and table 7, it was found that the best use of resizing is resized 256 x 256 pixels with 
an accuracy of 87% of the training model and 97% of test accuracy outside of training data. 

Table 6.  Training data resizing test 

Resize Total Image Test Data Correct Amount of Data Incorrect amount of data Accuracy 

16x16 400 367 33 91% 

32 x 32 400 366 34 93% 

64 x 64 400 369 31 92% 

128 x 128 400 360 40 93% 

256 x 256 400 349 51 87% 

512 x 512 400 339 61 84% 

Table 7.  resizing test outside of training data 

Resize Total Image Test Data Correct Amount of Data Incorrect amount of data Accuracy 

16x16 37 25 12 70% 

32 x 32 37 27 10 75% 

64 x 64 37 27 10 75% 

128 x 128 37 35 2 94% 

256 x 256 37 36 1 97% 

512 x 512 37 33 4 89% 

 
Tests were carried out on the effect of brightness on the training image, the brightness value used 

in this test was 20% for the addition and subtraction of brightness. From the overall brightness test, 
the accuracy is 86%, with the addition of 20% brightness and 20% brightness reduction, obtaining 
90% accuracy. Tests were also carried out on the effect of rotate on the training image. From the whole 
test of rotated image obtained 87% accuracy. 

4. Conclusion 

In this study, using the GLCM (Gray Level Co-Occurrence Matrix) algorithm for texture feature 
extraction and PNN (Probabilistic Neural Network) classification for beef and pork image 
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identification yields an accuracy of 87%, precision of 83% and recall of 90%. and the results using the 
ROC curve with a 5 fold cross validation approach in the classification model get an average AUC 
value of 0.87, where the AUC value is in the range of values between 0.80 - 0.90 and is included in 
the good classification category. [17].In this study, testing was carried out on the effect of resize, 
brightness, and rotate values. The test results show that the use of resize and brightness values 
affects the accuracy value, while the rotate value test does not affect the accuracy value. The use of 
Hue Saturation Value (HSV) color segmentation can be used as a reference to improve model 
accuracy. The gray level co-occurrence matrix (GLCM) feature extraction value can be used as a 
reference in the classification using the dissimilarity, correlation, homogeneity, contrast, ASM, and 
energy features showing the difference in values between the two meat images. The use of the 
smoothing parameter value or standard deviation of 10 in the PNN (Probabilistic Neural Network) 
algorithm can be used as a reference to get the best accuracy. 

In this study, it was found that there are limitations and shortcomings in identifying meat images, 
namely images with insufficient lighting or images with excessive lighting, there are still errors in 
recognizing meat textures so that identification errors occur. It is hoped that in future research, other 
color moments algorithms will be added to handle different lighting. 
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