Classification of mango plants based on leaf shape using GLCM and K-nearest neighbor methods

Bona Joshua Hutasoit, Herry Sofyan, Frans Richard Kodong

Abstract


Objective: Apply the GLCM method to select mango leaf feature extraction and determine the accuracy level obtained from the K-Nearest Neighbor classification results.
Design/method/approach: Using GLCM and K-Nearest Neighbor(KNN) methods. System development using the Prototype method.
Results: The test results have been carried out using as many as 60 mango leaves compared to training data and 80:20 test data, with different accuracy. The highest accuracy is at K = 3 by 81% using 6 features, K = 6 by 78% using 5 features, and K = 7 by 74% using 4 features.
Authenticity/state of the art: The difference between this research and previous research is the pre-processing method, the type of features used, and the classification method. In this method, the mango leaf image is converted to grayscale, and a feature extraction process is carried out. Then the results of feature extraction will be classified using the K-Nearest Neighbor method. The output of this system is the result of the image classification of mango leaves, such as Kweni, Lalijowo, and Madu.


Full Text:

PDF

References


S. Suhendri, F. Muhammad Muharam, and K. Aelani, “Implementasi Support Vector Machine (Svm) Untuk Klasifikasi Jenis Daun Mangga Menggunakan Metode Gray Level Co-Occurrence Matrix,” KOPERTIP J. Ilm. Manaj. Inform. dan Komput., vol. 1, no. 3, pp. 93–100, 2017, doi: 10.32485/kopertip.v1i03.22.

eko prasetyo soffiana agustin, “Klasifikasi jenis pohon mangga gadung dan curut berdasarkan tesktur daun,” pp. 58–64, 2011.

M. Nasir, “Klasifikasi Jenis Mangga Berdasarkan Bentuk Daun Menggunakan Metode K-Nearest Neighbor,” vol. 3, no. 2, pp. 87–91, 2018.

E. Budianita, T. Ulfadhyani, and F. Yanto, “Implementasi Algoritma Canny Dan Backpropagation Untuk Mengklasifikasi Jenis Tanaman Mangga,” no. November, pp. 13–21, 2019.

A. Patriot, S. Pamungkas, N. Nafi, and N. Q. Nawafilah, “K-NN Klasifikasi Kematangan Buah Mangga Manalagi Menggunakan L * A * B dan Fitur Statistik,” vol. 4, pp. 1–8, 2019.

S. Wibowo, “Penentuan Jenis Buah Mangga Berdasarkan Bentuk Daun Menggunakan Metode K-Means,” vol. 01, no. 02, pp. 16–24, 2017.

H. Judul, D. A. Kurniawan, P. Studi, T. Informatika, F. Teknik, and U. M. Jember, “KLASIFIKASI JENIS POHON MANGGA ARUMANIS DAN MANALAGI BERDASARKAN EKTRAKSI FITUR ( GLCM ) KLASIFIKASI JENIS POHON MANGGA ARUMANIS DAN MANALAGI BERDASARKAN EKTRAKSI FITUR ( GLCM ),” 2016.

O. R. Indriani, E. J. Kusuma, C. A. Sari, E. H. Rachmawanto, and D. R. I. M. Setiadi, “Tomatoes classification using K-NN based on GLCM and HSV color space,” Proc. - 2017 Int. Conf. Innov. Creat. Inf. Technol. Comput. Intell. IoT, ICITech 2017, vol. 2018-Janua, pp. 1–6, 2018, doi: 10.1109/INNOCIT.2017.8319133.

T. Pengenalan and P. Tanda, “Analisa kinerja jaringan syaraf tiruan back propagation terhadap pengenalan pola tanda tangan,” 1993.

E. Susilowati, U. Gunadarma, K. Baru, and K. Clustering, “Konversi Citra RGB Ke Citra HSV Dan HCL Pada Citra Jeruk Medan,” vol. 2, 2018.

E. Budianita, J. Jasril, and L. Handayani, “Implementasi Pengolahan Citra dan Klasifikasi K-Nearest Neighbour Untuk Membangun Aplikasi Pembeda Daging Sapi dan Babi Berbasis Web,” J. Sains dan Teknol. Ind., vol. 12, no. Vol 12, No 2 (2015): Juni 2015, pp. 242–247, 2015, [Online]. Available: http://ejournal.uin-suska.ac.id/index.php/sitekin/article/view/1005.

P. K. Mall, P. K. Singh, and D. Yadav, “GLCM based feature extraction and medical X-RAY image classification using machine learning techniques,” 2019 IEEE Conf. Inf. Commun. Technol. CICT 2019, 2019, doi: 10.1109/CICT48419.2019.9066263.

R. Rahmadianto, E. Mulyanto, and T. Sutojo, “Implementasi Pengolahan Citra dan Klasifikasi K-Nearest Neighbor untuk Mendeteksi Kualitas Telur Ayam,” J. VOI (Voice Informatics), vol. 8, no. 1, pp. 45–54, 2019, [Online]. Available: http://voi.stmik-tasikmalaya.ac.id/index.php/voi/article/view/164.

M. Nishom, “Perbandingan Akurasi Euclidean Distance, Minkowski Distance, dan Manhattan Distance pada Algoritma K-Means Clustering berbasis Chi-Square,” J. Inform. J. Pengemb. IT, vol. 4, no. 1, pp. 20–24, 2019, doi: 10.30591/jpit.v4i1.1253.

G. F. Rohmi, W. B. Zulfikar, and Y. A. Gerhana, “Implementasi Citra Digital Berdasarkan Nilai HSV Untuk Mengidentifikasi Jenis Tanaman Mangga Menggunakan Algoritma K-Nearest Neighbor,” Insight, vol. 1, no. 1, pp. 142–147, 2018.




DOI: https://doi.org/10.31315/cip.v1i1.6124

Refbacks

  • There are currently no refbacks.


___________________________________________________________
Computing and Information Processing Letters
ISSN
Published by Department of Informatics, Universitas Pembangunan Naisonal Veteran Yogyakarta
W : http://jurnal.upnyk.ac.id/index.php/cip/index
E : shoffans@upnyk.ac.id, shoffans@ascee.org

 This work is licensed under a Creative Commons Attribution-ShareAlike 4.0

View My Stats