Identification of beef and pork using gray level co-occurrence matrix and probabilistic neural network

Clarita Magdalena, Heru Cahya Rustamaji, Bambang Yuwono

Abstract


Objective: Identify images of beef and pork using texture feature extraction Gray Level Co-Occurrence Matrix and Probabilistic Neural Network classification algorithm.
Design/method/approach: Apply texture feature extraction to Gray Level Co-Occurrence Matrix and Probabilistic Neural Network Classifier to perform classification.
Results: From the test results with k-fold cross-validation and confusion matrix, it shows that feature extraction of Gray Level Co-Occurrence Matrix and Probabilistic Neural Network Classifier get an average accuracy of 87%, precision 83%, and recall 90%.
Authenticity/state of the art: In this study, several scenarios were tested, namely the effect of using resize, brightness, and rotate values. Using a resize value of 256 x 256 pixels from the test results got the best accuracy of 87%. The brightness test of 20% affects the accuracy rate of 86% on increasing brightness and 90% on reducing brightness. In contrast, the test on the rotated image does not affect the accuracy results. The average accuracy obtained is 87%. The data in this study were obtained by collecting primary data on images of beef and pork in several markets in Denpasar.


Full Text:

PDF

References


Wahyuningsih, “Pusat Data dan Sistem Informasi Pertanian Sekretariat Jenderal Kementerian Pertanian,” Bul. Konsumsi Pangan, vol. 09, no. 01, pp. 32–42, 2019.

M. M. Ir. Adi Nugroho, Provinsi Bali Dalam Angka 2020 Bali Province in Figures 2020. ©BPS Provinsi Bali/BPS - Statistics of Bali Provinc, 2020.

Neneng, K. Adi, and R. Isnanto, “Support Vector Machine Untuk Klasifikasi Citra Jenis Daging Berdasarkan Tekstur Menggunakan Ekstraksi Ciri Gray Level Co-Occurrence Matrices (GLCM),” J. Sist. Inf. Bisnis, vol. 6, no. 1, p. 1, 2016, doi: 10.21456/vol6iss1pp1-10.

R. de S. Fernando, R. S. William, and P. Helio, “Multi-scale gray level co-occurrence matrices for texture description,” Neurocomputing, vol. 120, pp. 336–345, 2013, doi: 10.1016/j.neucom.2012.09.042.

E. Budianita, Jasril, and L. Handayani, “Implementasi Pengolahan Citra dan Klasifikasi K-Nearest Neighbour Untuk Membangun Aplikasi Pembeda Daging Sapi dan Babi Berbasis Web,” J. Sains dan Teknol. Ind., vol. 12, no. Vol 12, No 2 (2015): Juni 2015, pp. 242–247, 2015, [Online]. Available: http://ejournal.uin-suska.ac.id/index.php/sitekin/article/view/1005.

H. Wibowo and A. E. Minarno, “KLASIFIKASI CITRA MENGGUNAKAN MULTI TEXTON,” Semin. Teknol. dan Rekayasa, pp. 978–979, 2015.

R. Destiana, Y. N. Nasution, and S. Wahyuningsih, “Klasifikasi Probabilistic Neural Network (PNN) pada Data Diagnosa Penyakit Demam Berdarah,” Pros. Semin. Nas. Mat. Stat. dan Apl., pp. 15–21, 2019.

S. Kusumadewi, “Klasifikasi Pola Menggunakan Jaringan Probabilistik,” Semin. Nas. Apl. Teknol. dan Inf. 2014, pp. 65–72, 2014.

M. Astiningrum, M. Mentari, and R. R. N. Rachma, “Deteksi Kesegaran Daging Sapi Berdasarkan,” Semin. Inform. Apl., pp. 217–222, 2014.

U. Andayani, A. Wijaya, R. F. Rahmat, B. Siregar, and M. F. Syahputra, “Fish Species Classification Using Probabilistic Neural Network,” J. Phys. Conf. Ser., vol. 1235, no. 1, 2019, doi: 10.1088/1742-6596/1235/1/012094.

A. M. MH Purnomo, Konsep pengolahan citra digital dan ekstraksi fitur. Yogyakarta: Graha Ilmu, 2010.

F. Albregtsen, “Statistical Texture Measures Computed from Gray Level Coocurrence Matrices,” Arte, Individuo y Soc., vol. 22, no. 1, pp. 59–73, 2008, doi: 10.5209/ARIS.6586.

Adi Triyanto, “Ekstraksi Ciri Pada Data Suara Menggunakan Spektra Orde Tinggi Dan Kuantisasi Vektor Untuk Identifikasi Pembicara Menggunakan Jaringan Neural Buatan”,” Tesis, Progr. Pasca Sarj. Ilmu Komputer, Univ. Indones., 2000, [Online]. Available: https://lontar.cs.ui.ac.id/Lontar/opac/themes/newui/detail.jsp?id=7198&lokasi=lokal.

S. Haykin, Neural Networks : A Comprehensive Foundation. United States: Prentice Hall PTRUpper Saddle River, NJUnited States, 1994.

F. Gorunescu, Data Mining Concepts, Models and Techniques. German: Springer, Berlin, Heidelberg, 2011.

A. P. Chazhoor, “ROC curve in machine learning,” 2019. https://towardsdatascience.com/roc-curve-in-machine-learning-fea29b14d133.

Suwarno and A. A. Abdillah, “Penerapan Algoritma Bayesian Regularization Backpropagation Untuk Memprediksi Penyakit Diabetes,” J. MIPA, vol. 39, no. 2, pp. 150–158, 2016.




DOI: https://doi.org/10.31315/cip.v1i1.6126

___________________________________________________________
Computing and Information Processing Letters
ISSN
Published by Department of Informatics, Universitas Pembangunan Naisonal Veteran Yogyakarta
W : http://jurnal.upnyk.ac.id/index.php/cip/index
E : shoffans@upnyk.ac.id, shoffans@ascee.org

 This work is licensed under a Creative Commons Attribution-ShareAlike 4.0

View My Stats
slot gacor slot gacor hari ini slot gacor 2025 demo slot pg slot gacor slot gacor