Pengaruh Gliserol sebagai Plasticizer terhadap Karakterisasi Edible Film dari Kappa Karaginan

Wahyu Adinda Larasati, Yeni Rahmawati, Fadlilatul Taufany, Susianto Susianto, Ali Altway, Siti Nurkhamidah

Abstract


Perkembangan industri pengemasan makanan di era mendatang akan beralih ke bahan alami dan ramah lingkungan yang bisa diproduksi dari biopolimer seperti pati dan hidrokoloid lainnya untuk mengurangi paparan polusi dari polimer sintetis. Kappa karaginan memiliki sifat yang rapuh, sehingga dibutuhkan plasticizer untuk menghasilkan edible film yang lebih elastis. Jenis plasticizer yang digunakan adalah gliserol. Tujuan dari penelitian ini adalah untuk mengetahui pengaruh konsentrasi gliserol terhadap karakterisasi edible film dari kappa karaginan. Kappa karaginan dengan konsentrasi 1% (b/v) dilarutkan dengan akuades kemudian ditambahkan gliserol dengan variasi konsentrasi 0,5; 1; 1,5, dan 2% (b/v). Edible film kemudian di karakterisasi berdasarkan sifat mekanik, gugus fungsional, ketebalan, kadar air, kuat tarik, elongasi, warna dan opacity. Hasil analisa menunjukkan bahwa penambahan gliserol sebesar 1% dapat meningkatkan sifat mekaniknya, dan film mempunyai 0,146 mm, kadar air 17,90%, kuat tarik dan elongasi 2,53 MPa dan 14,09% dan sifat optik warna dan opacity masing-masing sebesar 96,96% dan 1,32. 


Keywords


edible film; kappa karaginan; gliserol; kemasan

References


Arik Kibar, E. A., & Us, F. (2017). Starch–Cellulose Ether Films: Microstructure and Water Resistance. Journal of Food Process Engineering, 40(2). https://doi.org/10.1111/jfpe.12382

Asfaw, W. A., Tafa, K. D., & Satheesh, N. (2023). Optimization of citron peel pectin and glycerol concentration in the production of edible film using response surface methodology. Heliyon, 9(3), e13724. https://doi.org/10.1016/j.heliyon.2023.e13724

Chen, L., Dai, T., Chen, Y., Han, Y., Copyright, fnut, Cheng, C., Chen, S., Su, J., Zhu, M., Zhou, M., & Chen, T. (2022). OPEN ACCESS EDITED BY Recent advances in carrageenan-based films for food packaging applications.

Dick, M., Costa, T. M. H., Gomaa, A., Subirade, M., Rios, A. de O., & Flôres, S. H. (2015). Edible film production from chia seed mucilage: Effect of glycerol concentration on its physicochemical and mechanical properties. Carbohydrate Polymers, 130, 198–205. https://doi.org/10.1016/j.carbpol.2015.05.040

Dong, Y., Li, Y., Ma, Z., Rao, Z., Zheng, X., Tang, K., & Liu, J. (2023). Effect of polyol plasticizers on properties and microstructure of soluble soybean polysaccharide edible films. Food Packaging and Shelf Life, 35, 101023. https://doi.org/10.1016/j.fpsl.2022.101023

Fadilah, Susanti, A. D., Distantina, S., Purnamasari, D. P., & Ahmad, J. F. (2020). Mechanical properties of films from carboxy methyl glucomannan and carrageenan with glycerol as plasticizer. AIP Conference Proceedings, 2217. https://doi.org/10.1063/5.0000842

Fahrullah, F., Radiati, L. E., Purwadi, P., & Rosyidi, D. (2020a). The Effect of Different Plasticizers on the Characteristics of Whey Composite Edible Film. Jurnal Ilmu Dan Teknologi Hasil Ternak, 15(1), 31–37. https://doi.org/10.21776/ub.jitek.2020.015.01.4

Fahrullah, F., Radiati, L. E., Purwadi, P., & Rosyidi, D. (2020b). The Effect of Different Plasticizers on the Characteristics of Whey Composite Edible Film. Jurnal Ilmu Dan Teknologi Hasil Ternak, 15(1), 31–37. https://doi.org/10.21776/ub.jitek.2020.015.01.4

Farhan, A., & Hani, N. M. (2017). Characterization of edible packaging films based on semi-refined kappa-carrageenan plasticized with glycerol and sorbitol. Food Hydrocolloids, 64, 48–58. https://doi.org/10.1016/j.foodhyd.2016.10.034

Fatnasari, A., Nocianitri, K. A., & Suparthana, I. P. (2018). The Effect of Glycerol Concentration on The Characteristic Edible Film Sweet Potato Starch (Ipomoea batatas L.). Scientific Journal of Food Technology), 5(1), 27–35.

Guidara, M., Yaich, H., Benelhadj, S., Adjouman, Y. D., Richel, A., Blecker, C., Sindic, M., Boufi, S., Attia, H., & Garna, H. (2020). Smart ulvan films responsive to stimuli of plasticizer and extraction condition in physico-chemical, optical, barrier and mechanical properties. International Journal of Biological Macromolecules, 150, 714–726. https://doi.org/10.1016/j.ijbiomac.2020.02.111

Horwitz, W. (2006). Official methods of analysis of AOAC International. AOAC International.

Huang, M., Yu, J., & Ma, X. (2005). Ethanolamine as a novel plasticiser for thermoplastic starch. Polymer Degradation and Stability, 90(3), 501–507. https://doi.org/10.1016/j.polymdegradstab.2005.04.005

Irawan, S. (2010). Pengaruh Gliserol terhadap Sifat Fisik/Mekanik dan Barrier Edible Film dari Kitosan. Jurnal Kimia Dan Kemasan, 32(1), 6. https://doi.org/10.24817/jkk.v32i1.2735

Karbowiak, T., Hervet, H., Léger, L., Champion, D., Debeaufort, F., & Voilley, A. (2006a). Effect of Plasticizers (Water and Glycerol) on the Diffusion of a Small Molecule in Iota-Carrageenan Biopolymer Films for Edible Coating Application. Biomacromolecules, 7(6), 2011–2019. https://doi.org/10.1021/bm060179r

Karbowiak, T., Hervet, H., Léger, L., Champion, D., Debeaufort, F., & Voilley, A. (2006b). Effect of Plasticizers (Water and Glycerol) on the Diffusion of a Small Molecule in Iota-Carrageenan Biopolymer Films for Edible Coating Application. Biomacromolecules, 7(6), 2011–2019. https://doi.org/10.1021/bm060179r

Martiny, T. R., Raghavan, V., de Moraes, C. C., da Rosa, G. S., & Dotto, G. L. (2020). Bio-based active packaging: Carrageenan film with olive leaf extract for lamb meat preservation. Foods, 9(12). https://doi.org/10.3390/foods9121759

Maruddin, F., Malaka, R., Baba, S., Amqam, H., Taufik, M., & Sabil, S. (2020). Brightness, elongation and thickness of edible film with caseinate sodium using a type of plasticizer. IOP Conference Series: Earth and Environmental Science, 492(1), 012043. https://doi.org/10.1088/1755-1315/492/1/012043

Medeiros Silva, V. D., Coutinho Macedo, M. C., Rodrigues, C. G., Neris dos Santos, A., de Freitas e Loyola, A. C., & Fante, C. A. (2020). Biodegradable edible films of ripe banana peel and starch enriched with extract of Eriobotrya japonica leaves. Food Bioscience, 38. https://doi.org/10.1016/j.fbio.2020.100750

Necas, J., & Bartosikova, L. (2013). Carrageenan: a review. In Veterinarni Medicina (Vol. 58, Issue 4).

Prasetyaningrum, A., Utomo, D. P., Raemas, A. F. A., Kusworo, T. D., Jos, B., & Djaeni, M. (2021). Alginate/κ-Carrageenan-Based Edible Films Incorporated with Clove Essential Oil: Physico-Chemical

Characterization and Antioxidant-Antimicrobial Activity. Polymers, 13(3), 354. https://doi.org/10.3390/polym13030354

Rahmawati, M., Arief, M., & Satyantini, W. H. (2019). The Effect of Sorbitol Addition on the Characteristic of Carrageenan Edible Film. IOP Conference Series: Earth and Environmental Science, 236, 012129. https://doi.org/10.1088/1755-1315/236/1/012129

Rajeswari, A., Christy, E. J. S., Swathi, E., & Pius, A. (2020). Fabrication of improved cellulose acetate-based biodegradable films for food packaging applications. Environmental Chemistry and Ecotoxicology, 2, 107–114. https://doi.org/10.1016/j.enceco.2020.07.003

Rane, L. R., Savadekar, N. R., Kadam, P. G., & Mhaske, S. T. (2014). Preparation and Characterization of K-Carrageenan/Nanosilica Biocomposite Film. Journal of Materials, 2014, 1–8. https://doi.org/10.1155/2014/736271

Summo, C., & De Angelis, D. (2022). The Importance of Edible Films and Coatings for Sustainable Food Development. https://doi.org/10.3390/foods

Tharanathan, R. N. (2003). Biodegradable films and composite coatings: Past, present and future. In Trends in Food Science and Technology (Vol. 14, Issue 3, pp. 71–78). Elsevier Ltd. https://doi.org/10.1016/S0924-2244(02)00280-7

Venugopal, V. (2016). Marine Polysaccharides. CRC Press. https://doi.org/10.1201/b10516

Vieira, M. G. A., da Silva, M. A., dos Santos, L. O., & Beppu, M. M. (2011). Natural-based plasticizers and biopolymer films: A review. European Polymer Journal, 47(3), 254–263. https://doi.org/10.1016/j.eurpolymj.2010.12.011

Warren, F. J., Gidley, M. J., & Flanagan, B. M. (2016). Infrared spectroscopy as a tool to characterise starch ordered structure—a joint FTIR–ATR, NMR, XRD and DSC study. Carbohydrate Polymers, 139, 35–42. https://doi.org/10.1016/j.carbpol.2015.11.066

Wicherts, J. M. (2016). Peer Review Quality and Transparency of the Peer-Review Process in Open Access and Subscription Journals. PLOS ONE, 11(1), e0147913. https://doi.org/10.1371/journal.pone.0147913

Xiao, M., Luo, L., Tang, B., Qin, J., Wu, K., & Jiang, F. (2022). Physical, structural, and water barrier properties of emulsified blend film based on konjac glucomannan/agar/gum Arabic incorporating virgin coconut oil. LWT, 154, 112683. https://doi.org/10.1016/j.lwt.2021.112683




DOI: https://doi.org/10.31315/e.v21i3.12451

Refbacks

  • There are currently no refbacks.

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM


Eksergi p-ISSN  1410-394X, e-ISSN 2460-8203,  is published by "Prodi Teknik Kimia UPN Veteran Yogyakarta".

Contact  Jl. SWK 104 (Lingkar Utara) Condong catur Sleman Yogyakarta

 

 Creative Commons License

Eksergi by http://jurnal.upnyk.ac.id/index.php/eksergi/index/ is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

 

 

Lihat Statistik Jurnal Kami