Design of a Simple Pyrolysis Reactor for Plastic Waste Conversion into Liquid Fuel using Biomass as Heating Source

Aditya Kurniawan, Bambang Sugiarto, Andri Perdana


A design that emphasizes simplicity and cost-effectiveness is applied to the plastic pyrolysis reaction system to produce liquid fuel. The reactor is fabricated from the waste refrigerant tank. The energy source for pyrolysis is generated by the combustion of biomass pellets. Forced convection by an electric blower is utilized to enhance the combustion efficiency and thus increase the heating rate with the overall average temperature at 412 °C. The coiled pipe is employed as a condenser system with water as its cooling media. The quantity of liquid product is measured for a different mass of PET-type plastic waste feed, with a maximum value of 17.7% w/w of feed mass is obtained. The physical characteristic of the liquid product is then analyzed using standard methods. It is found that its characteristics have approached the specification of commercial liquid fuel in the domestic market, with a liquid specific gravity of 0.776 and a heating value of 46 MJ/kg.


plastic pyrolysis; liquid fuel; biomass combustion; reactor design

Full Text:



Abdullah, N. A., Novianti, A., Hakim, I. I., Putra, N., & Koestoer, R. A. (2018). Influence of temperature on conversion of plastics waste (polystyrene) to liquid oil using pyrolysis process. In IOP Conference Series: Earth and Environmental Science.

Anuar Sharuddin, S. D., Abnisa, F., Wan Daud, W. M. A., & Aroua, M. K. (2016). A review on pyrolysis of plastic wastes. Energy Conversion and Management.

Armadi, B. H., Rangkuti, C., Fauzi, M. D., & Permatasari, R. (2017). The effect of cover use on plastic pyrolysis reactor heating process. In AIP Conference Proceedings.

Aziz, M. A., Al-Khulaidi, R. A., Rashid, M. M., Islam, M. R., & Rashid, M. A. N. (2017). Design and fabrication of a fixed-bed batch type pyrolysis reactor for pilot scale pyrolytic oil production in Bangladesh. In IOP Conference Series: Materials Science and Engineering.

Bappenas, & BPS. (2018). Proyeksi Penduduk Indonesia 2015-2045 Hasil SUPAS 2015 - 2045. Jakarta: Badan Pusat Statistik.

Campuzano, F., Brown, R. C., & Martínez, J. D. (2019). Auger reactors for pyrolysis of biomass and wastes. Renewable and Sustainable Energy Reviews, 102, 372–409.

Demirbas, A., & Al-Ghamdi, K. (2015). Relationships between specific gravities and higher heating values of petroleum components. Petroleum Science and Technology.

Djafar, R., & Darise, F. (2018). Pengaruh Jumlah Aliran Udara terhadap Nyala Api Efektif dari Reaktor Gasifikasi Biomassa Tipe Fixed Bed Downdraft menggunakan Bahan Bakar Tongkol Jagung. Jurnal Technopreneur (JTech), 6(2), 94.

Engineering Toolbox. (2003). Convective Heat Transfer.

Gaurh, P., & Pramanik, H. (2018). Production and characterization of pyrolysis oil using waste polyethylene in a semi batch reactor. Indian Journal of Chemical Technology.

Irzon, R. (2012). Perbandingan Calorific Value Beragam Bahan Bakar Minyak yang Dipasarkan di Indonesia Menggunakan Bomb Calorimeter. Jurnal Geologi Dan Sumberdaya Mineral, 22(4), 217–223.

Lee, S., Yoshida, K., & Yoshikawa, K. (2015). Application of Waste Plastic Pyrolysis Oil in a Direct Injection Diesel Engine: For a Small Scale Non-Grid Electrification. Energy and Environment Research.

Makibar, J., Fernandez-Akarregi, A. R., Alava, I., Cueva, F., Lopez, G., & Olazar, M. (2011). Investigations on heat transfer and hydrodynamics under pyrolysis conditions of a pilot-plant draft tube conical spouted bed reactor. Chemical Engineering and Processing: Process Intensification.


Perry, R. H., Green, D. W., & Maloney, J. O. (2008). Perry’s Chemical Engineers’ Handbook, 8th Edition. McGraw-Hill.

Pertamina. (2016). Spesifikasi Premium. September 11, 2019, (2015). Heat Capacity of Liquid and Solid Polymers at 298 K. January 3, 2020, physics/Cp Table2.html

Sarker, M., Kabir, A., Rashid, M. M., Molla, M., & Din Mohammad, A. S. M. (2011). Waste Polyethylene Terephthalate (PETE-1) Conversion into Liquid Fuel. Journal of Fundamentals of Renewable Energy and Applications.

Sharuddin, S. D. A., Abnisa, F., Daud, W. M. A. W., & Aroua, M. K. (2018). Pyrolysis of plastic waste for liquid fuel production as prospective energy resource. In IOP Conference Series: Materials Science and Engineering.

Tao, P., Ma, X. B., Chen, D. Z., & Wang, H. (2013). Pyrolysis of waste plastics: Effect of heating rate on product yields and oil properties. In Advanced Materials Research.

Tuly, S. S., Joarder, M. M. S., & Haque, M. E. (2019). Liquid fuel production by pyrolysis of polythene and PET plastic. In 8TH BSME INTERNATIONAL CONFERENCE ON THERMAL ENGINEERING.

Yuliansyah, A. T., Prasetya, A., Muhammad, A. A. R., & Laksono, R. (2015). Pyrolysis of plastic waste to produce pyrolytic oil as an alternative fuel. International Journal of Technology.



  • There are currently no refbacks.

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Eksergi p-ISSN  1410-394X, e-ISSN 2460-8203,  is published by Chemical Engineering Department, Faculty of Industrial Engineering, Universitas Pembangunan Nasional "Veteran" Yogyakarta.

Contact Chemical Engineering Department, UPN "Veteran" Yogyakarta Jl. SWK 104 (Lingkar Utara) Condong catur Sleman Yogyakarta

EKSERGI is associated to APTEKIM (Asosiasi Pendidikan Tinggi Teknik Kimia), Indonesia.

 Creative Commons License

Eksergi by is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.



Lihat Statistik Jurnal Kami