The Growth Mechanisms of Atomic Layer Deposition: An Overview
DOI:
https://doi.org/10.31315/e.v17i2.3714Keywords:
atomic layer deposition, growth mechanism, thin filmAbstract
In this review, the discussion emphasized on the growth mechanisms of atomic layer deposition which consists of a theoretical model and experimentally growth as well as the measurement testing as evidences. The deposition process description with some testing evidences can be used to facilitate in the effort to understand the basic concept of ALD growth mechanisms. Some metal oxides like Al2O3, HfO2, and TiO2 with these employed precursors are typically used for the detailed illustration during the reaction steps. Although the surface chemistry of ALD process has been well understood, systematic description which combine a theoretical and experimentally growth mechanism is still missing. This paper aims to provide a better understanding of ALD growth mechanisms and surface chemistry which eventually able to contribute on the thin film growth processing.References
Adhikari, S., Selvaraj, S. & Kim, D.H., 2019, Construction of heterojunction photoelectrode via ALD of Fe2O3 on Bi2WO6 for highly efficient photoelectrochemical sensing and degradation of tetracycline, Applied Catalysis B: Environmental, Vol. 244: 11-24.
Chen, Y., Yuchi, Q., Li, T., Yang, G., Miao, J., Huang, C., Liu, J., Li, A., Qin, Y. & Zhang, L., 2020, Precise engineering of ultra-thin Fe2O3 decorated Pt-based nanozymes via ALD to switch off undesired activity for enhanced sensing performance, Sensors & Actuators: B. Chemical, Vol. 305: 127436(8p).
Cheng, N. & Sun, X., 2017, Single atom catalyst by atomic layer deposition technique, Chinese Journal of Catalysis, Vol. 38: 1508-1514.
Delft, J.Av, Garcia-Alonso, D. & Kessels, W.M.M., 2012, Atomic layer deposition for photovoltaics: applications and prospects for solar cell manufacturing, Semiconductor Science and Technology, Vol. 27: 074002(1-13).
Edy, R., Huang, G.S., Zhao, Y.T., Zhang, J., Mei, Y.F. & Shi, J.J., 2016, Atomic layer deposition of TiO2-nanomembrane-based photocatalysts with enhanced performance, AIP Advances, Vol. 6: 115113(1-9).
Edy, R., Zhao, Y.T., Huang, G.S., Shi, J.J., Zhang, J., Solovev, A.A. & Mei, Y., 2016, TiO2 nanosheets synthesized by atomic layer deposition for photocatalysis, Progress in Natural Science: Materials International, Vol. 26: 493-497.
Edy, R., Huang, G.S., Zhao, Y.T., Guo, Y., Zhang, J., Mei, Y.F. & Shi, J.J., 2017, Influence of reactive surface groups on the deposition of oxides thin film by atomic layer deposition, Surface & Coatings Technology, Vol. 329: 149-154.
Edy, R., Huang, X.J., Guo, Y., Zhang, J. & Shi, J.J., 2013, Influence of argon plasma on the deposition of Al2O3 film onto the PET surfaces by atomic layer deposition, Nanoscale Research Letter, Vol. 8(79): 1-9.
George, S.M., 2010, Atomic layer deposition: An overview, Chemical Review, Vol. 110: 111-131.
Goldstein, D.N., McCormick, J.A. & George, S.M., 2008, Al2O3 atomic layer deposition with trimethylaluminum and ozone studied by in situ transmission FTIR spectroscopy and quadrupole mass spectrometry, Journal of Physical Chemistry C, Vol. 112: 19530-19539.
Graniel, O., Weber, M., Balme, S., Miele, P. & Bechelany, M., 2018, Atomic layer deposition for biosensing applications, Biosensors and Bioelectronics, Vol. 122: 147-159.
Heyman, A. & Musgrave, C.B., 2004, A quantum chemical study of the atomic layer deposition of Al2O3 using AlCl3 and H2O as precursors, Journal of Physical Chemistry B, Vol. 108: 5718-5725.
Hyde, G.K., Scarel, G., Spagnola, J.C., Peng, Q., Lee, K., Gong, B., Roberts, K.G., Roth, K.M., Hanson, C.A., Devine, C.K., Steward, S.M., Hojo, D., Na, J.-S., Jur. J.S. & Parsons, G.N., 2010, Atomic layer deposition and abrupt wetting transitions on nonwoven polypropylene and woven cotton fabrics, Langmuir, Vol. 26: 2550-2558.
Hu, Z. & Turner, C.H., 2006, Initial surface reactions of TiO2 atomic layer deposition onto SiO2 surfaces: Density functional theory calculations, Journal of Physics and Chemistry B, Vol. 110: 8337-8347.
Jiang, X., Huang, H., Prinz, F. & Bent, S.F., 2008, Application of atomic layer deposition of platinum to solid oxide fuel cells, Chemistry of Materials, Vol. 20: 3897-3905.
Johnson, R.W., Hultqvist, A. & Bent, S.F., 2014, A brief review of atomic layer deposition: from fundamental to applications, Materials Today, Vol. 17: 236-246.
Jur, J.S. & Parsons, G.N., 2011, Atomic layer deposition of Al2O3 and ZnO at atmospheric pressure in a flow tube reactor, ACS Applied Materials & Interfaces, Vol. 3: 299-308.
Kaipio, M., Blanquart, T., Tomczak, Y., Niinistö, J., Gavagnin, M., Longo, V., Wanzenbӧck, H.D., Pallem, V.R., Dussarrat, C., Puukilainen, E., Ritala, M. & Leskelä, M., 2014, Atomic layer deposition, characterization, and growth mechanistic studies of TiO2 thin films, Langmuir, Vol. 30: 7295-7404.
Kim, S., Lee, S., Ham, S.Y., Ko, D.H., Shin, S. & Jin, Z., 2019, A kinetic study of ZnO atomic layer deposition: Effects of surface hydroxyl concentration and steric hindrance, Applied Surface Science, Vol. 469: 804-810.
Knez, M., 2012, Diffusion phenomena in atomic layer deposition, Semiconductor Science and Technology, Vol. 27: 074001-074008.
Meng, X., Yang, X.Q. & Sun, X., 2012, Emerging applications of atomic layer deposition for lithium-ion battery studies, Advanced Materials, Vol. 24: 3589-3615.
Meng, X., Wang, X., Geng, D., Ozgit-Akgun, C., Schneider, N. & Elam, J.W., 2017, Atomic layer deposition for nanomaterial synthesis and functionalization in energy technology, Materials Horizons, Vol. 4:133-154.
Mukhopadhyay, A.B. & Musgrave, C.B., 2006, Non-growth ligand exchange reactions in atomic layer deposition of HfO2, Chemical Physics Letters, Vol. 421: 215-220.
Mukhopadhyay, A.B., Musgrave, C.B. & Sanz, J.F., 2008, Atomic layer deposition of Hafnium oxide from Hafnium chloride and water, Journal of American Chemical Society, Vol. 130: 11996-12006.
Ponraj, J.S., Attolini, G. & Bosi, M., 2013, Review on atomic layer deposition and applications of oxide thin films, Critical Reviews in Solid State and Materials Sciences, Vol. 38: 203-233.
Pore, V., Hatanpää, T., Ritala, M. & Leskelä, M., 2009, Atomic layer deposition of metal tellurides and selenides using alkylsilyl compounds of tellurium and selenium, Journal of the American Ceramic Society, Vol. 131: 3478-3480.
Puurunen, R.L., Vandervorst, W., Besling, W.F.A., Richard, O., Bender, H., Conard, T., Zhao, C., Delabie, A., Caymax, M., Gendt, S.D., Heyns, M., Viitanen, M.M., Ridder, M., Brongersma, H.H., Tamminga, Y., Dao, T., Win, T., Verheijen, M., Kaiser, M. & Tuominen, M., 2004, Island growth in the atomic layer deposition of zirconium oxide and aluminum oxide on hydrogen-terminated silicon: Growth mode modeling and transmission electron microscopy, Journal of Applied Physics, Vol. 96: 4878-4889.
Puurunen, R.L., 2003, Growth per cycle in atomic layer deposition: Real application examples of a theoretical model, Chemical Vapor Deposition, Vol. 9: 327-332.
Puurunen, R.L., 2004, Analysis of hydroxyl group controlled atomic layer deposition of hafnium dioxide from hafnium tetrachloride and water, Journal of Applied Physics, Vol. 95: 4777-4786.
Spagnola, J.C., Gong, B., Arvidson, S.A., Khan, S.A. & Parsons, G.N., 2010, Surface and sub-surface reactions during low temperature aluminum oxide atomic layer deposition on fiber-forming polymers, Journal of Material Chemistry, Vol. 20: 4213-4222.
Suntola, T. & Hyvarinen, J., 1985, Atomic layer epitaxy, Annual Review of Materials Science, Vol. 15: 177-195.
Wilson, C.A., Grubbs, R.K. & George, S.M., 2005, Nucleation and growth during Al2O3 atomic layer deposition on polymers, Chemistry of Materials, Vol. 17: 5625-5634.
Xu, Y. & Musgrave, C.B., 2004, A DFT study of the Al2O3 atomic layer deposition on SAMs: Effect of SAM termination, Chemistry of Material, Vol. 16: 646-653.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License(CC BY SA 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Eksergi allows authors retain the copyright and full publishing rights without restrictions.