The effects of Ultrasonication Pretreatment to Enzymatic Hydrolysis of Spirulina platensis Residue

Authors

  • Indriana Lestari Universitas Pembangunan Nasional "Veteran" Yogyakarta
  • Heni Anggorowati Universitas Pembangunan Nasional "Veteran" Yogyakarta http://orcid.org/0000-0003-0039-0347
  • Faizah Hadi Universitas Pembangunan Nasional "Veteran" Yogyakarta

DOI:

https://doi.org/10.31315/e.v0i0.4559

Keywords:

mikroalga, Spirulina platensis residue, ultrasonikasi, hidrolisis enzimatik, gula reduksi

Abstract

The development of renewable energy from microalgae sources is still being studied to overcome the world energy crisis, one of which is biodiesel from Spirulina platensis. However, the extraction process from Spirulina platensis to obtain oil leaving waste called Spirulina platensis residue (SPR). SPR still contains carbohydrates in the form of cellulose in cell walls and starch in plastids. Carbohydrates can be converted into bioethanol through the hydrolysis process. To optimize the enzymatic hydrolysis of carbohydrates, pretreatment is needed to break down the cell walls. One method of pretreatment is ultrasonication. This study aimed to determine the effect of ultrasonication pretreatment on enzymatic hydrolysis. Ultrasonication was carried out with time variations (15, 30, and 45 minutes) then continued hydrolysis at 40 oC for 8 hours using α-amylase and glucosidase (1: 1) enzymes. The results of hydrolysis in the form of reducing sugars were analyzed using the Nelson Somogyi method and obtained an optimal pretreatment time is 30 minutes with a reducing sugar concentration of 2.493,3 mg/L

Author Biographies

Indriana Lestari, Universitas Pembangunan Nasional "Veteran" Yogyakarta

Teknik Kimia

Heni Anggorowati, Universitas Pembangunan Nasional "Veteran" Yogyakarta

Teknik Kimia

Faizah Hadi, Universitas Pembangunan Nasional "Veteran" Yogyakarta

Teknik Kimia

References

Al Abdallah, Q., Nixon, B.T., Fortwendel, J.R., 2016, The enzymatic conversion of major algal and cyanobacterial carbohydrates to bioethanol, Frontiers in Energy Research, Vol.4, Article 36, November: 1-15.

Chen, C.Y., Zhao, X.Q., Yen, H.W., Ho, S.H., Cheng, C.L., Lee, D.J., Bai, F.W., Chang, J.S., 2013, Microalgae-based carbohydrates for biofuel production, Biochem. Eng. J. Vol.78, September: 1-10.

Christwardana, M., Nur, M.A., Hadiyanto, 2013, Spirulina platensis: potensinya sebagai bahan pangan fungsional. Jurnal Aplikasi Teknologi Pangan. Vol.2, No.1: 1-4.

Gunerken, E., D’Hondt, E., Eppink, M.H.M., Garcia-Gonzales, L., Elst, K., Wijffels, R.H., 2015, Cell disruption for microalgae biorefeneries, Biotechnology Advances. Vol. 33 Issue 2, April: 243-260.

Harun, R. M., Danquah, M.K., 2011, Enzymatic hydrolysis of microalgal biomass for bioethanol production, Chemical Engineering Journal. Vol.168 Issue 3, April: 1079-1084.

Jamilatun, S., Budhijanto, Rochmadi, Yuliestyan, A., Budiman, A., 2019, Effect of grain size, temperature and catalyst amount on pyrolysis production of Spirulina palntesis redidue (SPR), International Journal of Technology. Vol. 10 No. 3, Mei: 541-550.

Jeon, B.H., Choi, J.A., Kimm, H.C., Hwangm, J.H., Abou-Shanab, R.A.I., Dempsey, B.A., Regan, J.M., Kim, J.R., 2013, Ultrasonic disintegration of microalgal biomass and consequent improvement of bioaccessibility/bioavailability in microbial fermentation. Biotechnol for Biofuels, Vol. 6 No.1, Maret: 37.

Kuakpetoon, D., Wang, Y.J., 2007, Internal structure and physicochemical properties of corn starches as revealed by chemical surface gelatinization, Carbohydr. Res., Vol. 342 No. 15, Juni; 2253-2263.

Rinanti, A., Purwadi, R., 2018, Pemanfaatan mikroalga blooming dalam produksi bioetanol tanpa proses hidrolisis. Prosiding Seminar Nasional Kota Berkelanjutan 2018, hlm. 281-292.

Sekjen DEN. 2019. Outlook Energi Indonesia 2019. Hlm. 1-7. Jakarta: Dewan Energi Nasional.

Shokrkar, H., Ebrahimi, S., Zamani, M., Bioethanol production from acidic and enzymatic hydrolysates of mixed microalgae cul ture, Fuel, Vol. 200, Juli: 380-386.

Silva, C.E.F., Meneghello, D., Abud, A.K.S., Bertucco, A., 2020, Pretreatment of microbial biomass to improve the enzymatiz hydrolysis of carbohydrates by ultrasonication: yield vs energy consumption. Journal of King Saud University, Vol. 32 Issue 1, Januari: 1-8.

Somaglino, L., Bouchoux. G., Mestas, J., Lafon, C., 2011, Validation of an acoustic cavitation dose with hydroxyl radical production generated by inertial cavitation in pulsed mode: application to in vitro drug release from liposomes. Ultrason Sonochem. Vol. 18 Issue 3, Mei: 577-588.

Talebnia, F., Karakashev, D., Angelidaki, I., 2010, Production of bioethanol from wheat straw: An overview on pretreatment, hydrolysis and fermentation. Bioresour Technol, Vol.101 Issue 13, Juli: 4744-4753.

Tkemaladze, G.S., Makhashvili, K.A., 2016, Climate changes and photosynthesis. Annals of Agrarian Science, Vol.14 Issue 2, Juni: 119-126.

Velazquez-Lucio, J., Rodríguez-Jasso, R.M., Galindo, A.S., Cisneros, D.E.C., Aguilar, C.N., Fernandes, B.D., Ruiz, H.A., 2018, Microalga biomass pretreatment for bioethanol production: a review. Biofuel Research Journal, Vol. 17 Issue 1 No.1, p: 780-791.

Wang, M., Yuan, W., Jiang, X., Jing, Y., Wang, Z., 2014, Disruption of microalgal cells using high-frequency focused ultrasound. Bioresour. Technol, Vol. 153, Februari: 315–321

Zheng, J., Li, Q., Hu, A., Yang, L., Lu, J., Zhang, X., Lin, Q., 2013, Dual-frequency ultrasound effect on structure and properties of sweet potato starch. Starch J., Vol. 65, Februari: 621-627.

Published

2021-05-06

How to Cite

Lestari, I., Anggorowati, H., & Hadi, F. (2021). The effects of Ultrasonication Pretreatment to Enzymatic Hydrolysis of Spirulina platensis Residue. Eksergi, 18(1), 24–28. https://doi.org/10.31315/e.v0i0.4559

Issue

Section

Artikel