Renewable Energy from Pyrolysis of Pine Wood with Zeolite Catalyst
DOI:
https://doi.org/10.31315/e.v19i1.4564Abstract
Renewable energy becomes a hot issue on the decrease of fossil energy reserves that can not be renewed. To answer the challenge of the availability of these energy a study was performed in a high-temperature cracking process from pine wood to obtain fuel oil or so-called pyrolysis. The purpose of this study was to determine the yield, physical properties, and the calorific value of the pyrolysis results. Pyrolysis process is done by varying the percentage of mordenite-type zeolite catalyst as much as 0% b/b, 2% b/b, and 4% b/b, with a mass of 100 grams of pine wood that passes sieving each sample to 50 mesh. Before use, the catalysts physically activated by heating at a temperature of 500°C and chemically activated using HCl to enhance the activity of the zeolite. Pyrolysis carried out at 400°C, 450°C, 500°C, and 550°C. After the analysis, bio-oil obtained optimum yield of 43.77142% by mass of the catalyst 4% b/b and a temperature of 500 °C. Physical properties obtained in the form of density 1.094723 g/ml, 2.96 cP viscosity, and 58°C flash point. While the highest calorific value on the condition of the catalyst 4% and the reaction temperature 550°C is 26045.50 kJ/kg.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License(CC BY SA 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Eksergi allows authors retain the copyright and full publishing rights without restrictions.