Utilization of Nanochitosan as Adsorbent of Mercury (Hg) in Gold Ore Processing Waste
DOI:
https://doi.org/10.31315/e.v19i2.6862Abstract
Mercury pollution in gold ore processing wastewater can cause environmental and health problems. A large amount of mercury pollution causes neurological disease, paralysis, loss of sense of taste, irregular speech, and death. One effective method to reduce mercury amount in the environment is adsorption. Adsorption performance is affected by several factors such as surface area of material, deacetylation degree (DD), and adsorption condition, which is indicated by contact time and mercury concentration. Nanochitosan is used in this research. Effect of deacetylation degree (85%; 87%; 95%), contact time (30;60;90;120 minutes), and variation of mercury concentration (5;10;15;20;25;30 ppm) on adsorption performance was investigated in this research. Nanochitosan in this research is characterized by FTIR, SEM-EDX, BET-BJH, and pH PZC. AAS measures adsorption performance in this research. The result shows that nanochitosan, which has the best adsorption performance, is nanochitosan with a deacetylation degree of 95%, at a contact time of 60 minutes, and mercury concentration is 15 ppm.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License(CC BY SA 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Eksergi allows authors retain the copyright and full publishing rights without restrictions.