Fly Ash – Alginate Composites Beads for Rhodamine B Removal

Heni Anggorowati, Perwitasari Perwitasari, Indriana Lestari

Abstract


Dyes are a very serious problem for the environment. Composite beads consisting of fly ash and sodium alginate proved to be an adsorbent to reduce rhodamine b from dye waste. In this study, the effect of the mass of beads (5-45 grams), the pH of the solution (2-11) and the stirring time (0-360 min) was studied. Determination of concentration after adsorption was carried out by UV-Vis spectrophotometer. The maximum reduction in rhodamine b concentration of 31.15% was obtained after the adsorption process for 300 minutes with a mass of 35 grams of beads. The adsorption of rhodamine b is quite sensitive to the pH of the solution and shows the optimum adsorption value at pH 2. Based on the characterization with BET, fly ash – alginate beads include mesopores with a pore diameter of 10 nm, a total pore volume of 5,332 x 10-3 cc/g and a pore surface area. 2,133 m2/g

Keywords


fly ash; alginate; beads; adsorption; rhodamin b

References


Abdollahi, M., Alboofetileh, M., Rezaei, M., & Behrooz, R. (2013). Comparing physico-mechanical and thermal properties of alginate nanocomposite films reinforced with organic and/or inorganic nanofillers, Food Hydrocolloids, 32 (2), 416–424.

Abou-Gamra, Z.M., & Medien, H.A.A. (2013). Kinetic, thermodynamic and equilibrium studies of rhodamine b adsorption by low cost biosorbent sugar cane bagasse. Eur. Chem. Bull, 2, 417–422. 33.

Ahmaruzzaman M. (2008). Adsorption of phenolic compounds on low-cost adsorbents: A review. Adv Colloid Interface Sci ; 143(1-2):48-67. doi: 10.1016/j.cis.2008.07.002

Aravindhan, R., Fathima, N. N., Rao, J. R. & Nair, B. U., (2007). Equilibrium and thermodynamic studies on the removal of basic black dye using calcium alginate beads. Colloids and Surfaces A : Physicochemical and Engineering Aspects, 299(1-3), 232-238

Dwijayanti, U., Gunawan, G., Widodo, D.S., Haris, A., Suyati, L., & Lusiana, R.A., (2020) Adsorpsi methylene blue (MB) menggunakan abu layang batubara teraktivasi larutan NaOH. Anal Environ Chem 5(1):1–14. https://doi.org/10.23960/aec.v5.i1.2020.p01-14

Fitriansyah, A., Amir, H., & Elvinawati, E., (2021) Karakterisasi adsorben karbon aktif dari sabut pinang (Areca catechu) terhadap kapasitas adsorpsi zat warna indigosol blue 04-B. Alotrop 5(1):42–54

Hussain, S., Khan, N., Gul, S., Khan, S., & Khan, H., (2019). Contamination of water resources by food dyes and its removal technologies. in water chemistry. Intech Open: London, UK, pp. 1–14.

Pavithra, K.G., & Jaikumar, V. (2019). Removal of colorants from wastewater: A review on sources and treatment strategies. J. Ind. Eng. Chem. 75, 1–19.

Rahayu, Bandjar, A., Ninditha Susanto, N.C.A., Fajarwati, F.I., & Phuong, N. (2022). Rhodamine-B dyes adsorption by beads alginate. Walisongo Journal of Chemistry. 5 (1), 29-36

Shah, J., Jan, M.R., Haq, A., & Khan, Y. (2013). Removal of Rhodamine B from aqueous solutions and wastewater by walnut shells: Kinetics, equilibrium and thermodynamics studies. Front. Chem. Sci. Eng, 7, 428–436.

Tabish, M.S., Hanapi, N.S.M., Ibrahim, W.N., Saim, N., & Yahaya, N., (2019). Alginate-graphene oxide biocomposite sorbent for rapid and selective extraction of non-steroidal anti-inflammatory drugs using micro-solid phase extraction. Indones. J. Chem, 19 (3), 684 - 695

Uzma, N., & Monika, D. (2014). Adsorption studies of zinc(II) ions on biopolymer composite beads Of Alginate-Fly Ash. European Chemical Bulletin, 3(7), 682-691

Wierzbicka, E., Ku´smierek, K., Swi, A., & Legocka, I. (2022). Efficient rhodamine b dye removal from water by acid- and organo-modified halloysites. Minerals, 12, 350. https:// doi.org/10.3390/min12030350

Yu, Y., Murthy, B.N., Shapter, J., Constantopoulos, K.T., Voelcker, N., & Ellis, A. (2013). Benzene carboxylic acid derivatized graphene oxide nanosheets on natural zeolites as effective adsorbents for cationic dye removal. J. Hazard. Mater. 260, 330–338.




DOI: https://doi.org/10.31315/e.v19i3.8199

Refbacks

  • There are currently no refbacks.

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM


Eksergi p-ISSN  1410-394X, e-ISSN 2460-8203,  is published by Chemical Engineering Department, Faculty of Industrial Engineering, Universitas Pembangunan Nasional "Veteran" Yogyakarta.

Contact Chemical Engineering Department, UPN "Veteran" Yogyakarta Jl. SWK 104 (Lingkar Utara) Condong catur Sleman Yogyakarta

EKSERGI is associated to APTEKIM (Asosiasi Pendidikan Tinggi Teknik Kimia), Indonesia.


 Creative Commons License

Eksergi by http://jurnal.upnyk.ac.id/index.php/eksergi/index/ is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

 

 

Lihat Statistik Jurnal Kami