Current Research on The Development of Carbon Separation and Capture with Polymeric Membrane: A State of The Art Review
DOI:
https://doi.org/10.31315/e.v20i2.9096Keywords:
Membrane, Carbon Capture, PolymericAbstract
Separation and capture of carbon dioxide (CO2) has become a very hot topic of discussion recently. The increasing amount of carbon dioxide in the environment makes environmental pollution very significant. Membrane technology is one of the alternative carbon separation processes that are increasingly in demand, because membrane technology provides excellent advantages in terms of energy requirements used, capital investment invested, and ease of operating equipment compared to other processes. Many membrane constituent materials can be used to be the basic material for making membranes, including polymeric materials. This review discusses the various polymeric materials that can be used as basic materials for gas membranes in terms of plasticization, constituent components, flexibility, and mechanical strength. It also provides an understanding of alternatives to improve the properties of polymer-based membranes.
References
Abdullah, M. W., Musriani, R., Syariati, A., & Hanafie, H. (2020). Carbon emission disclosure in indonesian firms: The test of media-exposure moderating effects. International Journal of Energy Economics and Policy, 10(6), 732–741. https://doi.org/10.32479/IJEEP.10142
Al-Ghouti, M., Khraisheh, M. A. M., Ahmad, M. N. M., & Allen, S. (2005). Thermodynamic behaviour and the effect of temperature on the removal of dyes from aqueous solution using modified diatomite: A kinetic study. Journal of Colloid and Interface Science, 287(1), 6–13. https://doi.org/10.1016/j.jcis.2005.02.002
Ansaloni, L., Salas-Gay, J., Ligi, S., & Baschetti, M. G. (2017). Nanocellulose-based membranes for CO2 capture. Journal of Membrane Science, 522, 216–225. https://doi.org/10.1016/j.memsci.2016.09.024
Dai, Y., Niu, Z., Luo, W., Wang, Y., Mu, P., & Li, J. (2023). A review on the recent advances in composite membranes for CO2 capture processes. Separation and Purification Technology, 307(September 2022), 122752. https://doi.org/10.1016/j.seppur.2022.122752
Drohmann, C., & Beckman, E. J. (2002). Phase behavior of polymers containing ether groups in carbon dioxide. Journal of Supercritical Fluids, 22(2), 103–110. https://doi.org/10.1016/S0896-8446(01)00111-5
Du, H., Liu, W., Zhang, M., Si, C., Zhang, X., & Li, B. (2019). Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications. Carbohydrate Polymers, 209(January), 130–144. https://doi.org/10.1016/j.carbpol.2019.01.020
Dujardin, W., Van Goethem, C., Steele, J. A., Roeffaers, M., Vankelecom, I. F. J., & Koeckelberghs, G. (2019). Polyvinylnorbornene gas separation membranes. Polymers, 11(4). https://doi.org/10.3390/polym11040704
Han, Y., & Ho, W. S. W. (2018). Recent advances in polymeric membranes for CO2 capture. Chinese Journal of Chemical Engineering, 26(11), 2238–2254. https://doi.org/10.1016/j.cjche.2018.07.010
Han, Y., & Ho, W. S. W. (2020). Recent developments on polymeric membranes for CO2 capture from flue gas. Journal of Polymer Engineering, 40(6), 529–542. https://doi.org/10.1515/polyeng-2019-0298
Han, Y., & Ho, W. S. W. (2021a). Polymeric membranes for CO2 separation and capture. Journal of Membrane Science, 628(December 2020), 119244. https://doi.org/10.1016/j.memsci.2021.119244
Han, Y., & Ho, W. S. W. (2021b). Polymeric membranes for CO2 separation and capture. Journal of Membrane Science, 628(December 2020). https://doi.org/10.1016/j.memsci.2021.119244
Kagramanov, G. G., & Farnosova, E. N. (2017). Scientific and Engineering Principles of Membrane Gas Separation Systems Development. 51(1), 38–44. https://doi.org/10.1134/S0040579517010092
Karpov, G. O., Borisov, I. L., Volkov, A. V., Finkelshtein, E. S., & Bermeshev, M. V. (2020). Synthesis and gas transport properties of addition polynorbornene with perfluorophenyl side groups. Polymers, 12(6), 1–14. https://doi.org/10.3390/POLYM12061282
Kawakami, M., Iwanaga, H., Hara, Y., Iwamoto, M., & Kagawa, S. (1982). Gas permeabilities of cellulose nitrate/poly(ethylene glycol) blend membranes. Journal of Applied Polymer Science, 27(7), 2387–2393. https://doi.org/10.1002/app.1982.070270708
Khamwichit, A., Wattanasit, S., & Dechapanya, W. (2021). Synthesis of Bio-Cellulose Acetate Membrane from Coconut Juice Residues for Carbon Dioxide Removal From Biogas in Membrane Unit. Frontiers in Energy Research, 9(May). https://doi.org/10.3389/fenrg.2021.670904
Li, B., Duan, Y., Luebke, D., & Morreale, B. (2013). Advances in CO2 capture technology: A patent review. Applied Energy, 102, 1439–1447. https://doi.org/10.1016/j.apenergy.2012.09.009
Li, X., Cheng, Y., Zhang, H., Wang, S., Jiang, Z., Guo, R., & Wu, H. (2015). Efficient CO2 capture by functionalized graphene oxide nanosheets as fillers to fabricate multi-permselective mixed matrix membranes. ACS Applied Materials and Interfaces, 7(9), 5528–5537. https://doi.org/10.1021/acsami.5b00106
Liu, J., Zhang, S., Jiang, D. en, Doherty, C. M., Hill, A. J., Cheng, C., Park, H. B., & Lin, H. (2019). Highly Polar but Amorphous Polymers with Robust Membrane CO2/N2 Separation Performance. Joule, 3(8), 1881–1894. https://doi.org/10.1016/j.joule.2019.07.003
Mulder. (1996). Basic Principles of Membrane Technology. https://doi.org/9780792342489
Peng, L., Shi, M., Zhang, X., Xiong, W., Hu, X., Tu, Z., & Wu, Y. (2022). Facilitated transport separation of CO2 and H2S by supported liquid membrane based on task-specific protic ionic liquids. Green Chemical Engineering, 3(3), 259–266. https://doi.org/10.1016/j.gce.2021.12.005
Pires da Mata Costa, L., Micheline Vaz de Miranda, D., Couto de Oliveira, A. C., Falcon, L., Stella Silva Pimenta, M., Guilherme Bessa, I., Juarez Wouters, S., Andrade, M. H. S., & Pinto, J. C. (2021). Capture and reuse of carbon dioxide (Co2) for a plastics circular economy: A review. Processes, 9(5). https://doi.org/10.3390/pr9050759
Rahmah, W., Kadja, G. T. M., Mahyuddin, M. H., Saputro, A. G., Dipojono, H. K., & Wenten, I. G. (2022). Small-pore zeolite and zeotype membranes for CO2capture and sequestration - A review. Journal of Environmental Chemical Engineering, 10(6), 108707. https://doi.org/10.1016/j.jece.2022.108707
Ramezani, R., Di Felice, L., & Gallucci, F. (2022). A Review on Hollow Fiber Membrane Contactors for Carbon Capture: Recent Advances and Future Challenges. Processes, 10(10), 1–44. https://doi.org/10.3390/pr10102103
Shah Buddin, M. M. H., & Ahmad, A. L. (2021). A review on metal-organic frameworks as filler in mixed matrix membrane: Recent strategies to surpass upper bound for CO2 separation. Journal of CO2 Utilization, 51(April), 101616. https://doi.org/10.1016/j.jcou.2021.101616
Xie, W. H., Li, H., Yang, M., He, L. N., & Li, H. R. (2022). CO2 capture and utilization with solid waste. Green Chemical Engineering, 3(3), 199–209. https://doi.org/10.1016/j.gce.2022.01.002
Zhao, Y., & Ho, W. S. W. (2013). CO2-selective membranes containing sterically hindered amines for CO2/H2 separation. Industrial and Engineering Chemistry Research, 52(26), 8774–8782. https://doi.org/10.1021/ie301397m
Zoppi, R. A., & Gonçalves, M. C. (2002). Hybrids of cellulose acetate and sol-gel silica: Morphology, thermomechanical properties, water permeability, and biodegradation evaluation. Journal of Applied Polymer Science, 84(12), 2196–2205. https://doi.org/10.1002/app.10427
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License(CC BY SA 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Eksergi allows authors retain the copyright and full publishing rights without restrictions.