Thermogravimetric Analysis and Thermal Decomposition of Bio-Oil Production from Sugarcane Leaves Using Fast Pyrolysis Process
Abstract
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Akoueson, F., Chbib, C., Monchy, S., Paul-Pont, I., Doyen, P., Dehaut, A., & Duflos, G. (2021). Identification and quantification of plastic additives using pyrolysis-GC/MS: A review. Science of the Total Environment, 773. https://doi.org/10.1016/j.scitotenv.2021.145073.
Alves, J. L. F., da Silva, J. C. G., Mumbach, G. D., Domenico, M. Di, Bolzan, A., Machado, R. A. F., & Marangoni, C. (2022). Evaluating the bioenergy potential of cupuassu shell through pyrolysis kinetics, thermodynamic parameters of activation, and evolved gas analysis with TG/FTIR technique. Thermochimica Acta, 711, 723–739. https://doi.org/10.1016/j.tca.2022.179187
Bach, Q. V., & Chen, W. H. (2017). Pyrolysis characteristics and kinetics of microalgae via thermogravimetric analysis (TGA): A state-of-the-art review. Bioresource Technology, 246, 88–100. https://doi.org/10.1016/j.biortech.2017.06.087
Branca, C., & Di Blasi, C. (2015). Thermogravimetric analysis of the combustion of dry distiller’s grains with solubles (DDGS) and pyrolysis char under kinetic control. Fuel Processing Technology, 129, 67–74. https://doi.org/10.1016/j.fuproc.2014.08.019
Cavalcanti, E. J. C., Carvalho, M., & da Silva, D. R. S. (2020). Energy, exergy and exergoenvironmental analyses of a sugarcane bagasse power cogeneration system. Energy Conversion and Management, 222. https://doi.org/10.1016/j.enconman.2020.113232
de Almeida, S. G. C., Tarelho, L. A. C., Hauschild, T., Costa, M. A. M., & Dussán, K. J. (2022). Biochar production from sugarcane biomass using slow pyrolysis: Characterization of the solid fraction. Chemical Engineering and Processing - Process Intensification, 179(February). https://doi.org/10.1016/j.cep.2022.109054
Dhyani, V., Kumar, J., & Bhaskar, T. (2017). Thermal decomposition kinetics of sorghum straw via thermogravimetric analysis. Bioresource Technology, 245(September), 1122–1129. https://doi.org/10.1016/j.biortech.2017.08.189
Fries, E., Dekiff, J. H., Willmeyer, J., Nuelle, M. T., Ebert, M., & Remy, D. (2013). Identification of polymer types and additives in marine microplastic particles using pyrolysis-GC/MS and scanning electron microscopy. Environmental Sciences: Processes and Impacts, 15(10), 1949–1956. https://doi.org/10.1039/c3em00214d.
Jamilatun, S., Aktawan, A., Budiman, A., & Mufandi, I. (2022). Thermogravimetric analysis kinetic study of Spirulina platensis residue pyrolysis. IOP Conference Series: Earth and Environmental Science, 963(1). https://doi.org/10.1088/1755-1315/963/1/012010.
Jamilatun, Siti, Mufandi, I., Evitasari, R. T., & Budiman, A. (2020). Effects of temperature and catalysts on the yield of bio-oil during the pyrolysis of Spirulina platensis residue. International Journal of Renewable Energy Research, 10(2), 678–686.
Jamilatun, Siti, Pitoyo, J., Amelia, S., Ma’arif, A., Hakika, D. C., & Mufandi, I. (2022). Experimental Study on The Characterization of Pyrolysis Products from Bagasse (Saccharum Officinarum L.): Bio-oil, Biochar, and Gas Products. Indonesian Journal of Science and Technology, 7(3), 565–582. https://doi.org/10.17509/ijost.v7i3.51566.
Kan, T., Strezov, V., & Evans, T. (2016). Effect of the Heating Rate on the Thermochemical Behavior and Biofuel Properties of Sewage Sludge Pyrolysis. Energy and Fuels, 30(3), 1564–1570. https://doi.org/10.1021/acs.energyfuels.5b02232.
Mishra, G., Kumar, J., & Bhaskar, T. (2015). Kinetic studies on the pyrolysis of pinewood. Bioresource Technology, 182, 282–288. https://doi.org/10.1016/j.biortech.2015.01.087.
Mishra, R. K., & Mohanty, K. (2020). Kinetic analysis and pyrolysis behaviour of waste biomass towards its bioenergy potential. Bioresource Technology, 311(May), 123480. https://doi.org/10.1016/j.biortech.2020.123480.
Moralı, U., Yavuzel, N., & Şensöz, S. (2016). Pyrolysis of hornbeam (Carpinus betulus L.) sawdust: Characterization of bio-oil and bio-char. Bioresource Technology, 221, 682–685. https://doi.org/10.1016/j.biortech.2016.09.081.
Mufandi, I., Treedet, W., Singbua, P., & Suntivarakorn, R. (2020). Efficiency of Bio - oil Production from Napier Grass Using Circulating Fluidized Bed Reactor with Bio - oil Scrubber. KKU Research Journal, 20(December), 94–107.
Naqvi, S. R., Tariq, R., Shahbaz, M., Naqvi, M., Aslam, M., Khan, Z., Mackey, H., Mckay, G., & Al-Ansari, T. (2021). Recent developments on sewage sludge pyrolysis and its kinetics: Resources recovery, thermogravimetric platforms, and innovative prospects. Computers and Chemical Engineering, 150, 107325. https://doi.org/10.1016/j.compchemeng.2021.107325.
Ren, S., Ye, X. P., Borole, A. P., Kim, P., & Labbé, N. (2016). Analysis of switchgrass-derived bio-oil and associated aqueous phase generated in a semi-pilot scale auger pyrolyzer. Journal of Analytical and Applied Pyrolysis, 119, 97–103. https://doi.org/10.1016/j.jaap.2016.03.013.
Strezov, V., Evans, T. J., & Hayman, C. (2008). Thermal conversion of elephant grass (Pennisetum Purpureum Schum) to bio-gas, bio-oil and charcoal. Bioresource Technology, 99(17), 8394–8399. https://doi.org/10.1016/j.biortech.2008.02.039.
Sugumaran, V., Prakash, S., Ramu, E., Arora, A. K., Bansal, V., Kagdiyal, V., & Saxena, D. (2017). Detailed characterization of bio-oil from pyrolysis of non-edible seed-cakes by Fourier Transform Infrared Spectroscopy (FTIR) and gas chromatography mass spectrometry (GC–MS) techniques. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 1058(January), 47–56. https://doi.org/10.1016/j.jchromb.2017.05.014.
Suntivarakorn, R., & Treedet, W. (2016). Improvement of Boiler’s Efficiency Using Heat Recovery and Automatic Combustion Control System. Energy Procedia, 100(September), 193–197. https://doi.org/10.1016/j.egypro.2016.10.164.
Treedet, W., Suntivarakorn, R., Mufandi, I., & Singbua, P. (2020). Bio-oil production from Napier grass using a pyrolysis process: Comparison of energy conversion and production cost between bio-oil and other biofuels. International Energy Journal, 20(2), 155–168.
DOI: https://doi.org/10.31315/e.v20i2.9849
Refbacks
- There are currently no refbacks.
Article Metrics
Metrics powered by PLOS ALM
Eksergi p-ISSN 1410-394X, e-ISSN 2460-8203, is published by "Prodi Teknik Kimia UPN Veteran Yogyakarta".
Contact Jl. SWK 104 (Lingkar Utara) Condong catur Sleman Yogyakarta
EKSERGI is associated to APTEKIM (Asosiasi Pendidikan Tinggi Teknik Kimia), Indonesia.
Eksergi by http://jurnal.upnyk.ac.id/index.php/eksergi/index/ is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.