Thermogravimetric Analysis and Thermal Decomposition of Bio-Oil Production from Sugarcane Leaves Using Fast Pyrolysis Process
DOI:
https://doi.org/10.31315/e.v20i2.9849Keywords:
Sugarcane leaves, Thermal Decomposition, Pyrolysis, TGAAbstract
Sugarcane leaves are one of the agro-industrial wastes derived from sugarcane plants. In this research, sugarcane leaves are used as raw material for pyrolysis which produces three main products: liquid, solid, and gas. The focus of this research is to identify the effect of temperature on pyrolysis, identify mass changes, identify decomposition, and identify the chemical composition of bio-oil. The pyrolysis was carried out using a Circulating Fluidized Bed (CFBr) reactor with pyrolysis temperature variations from 440oC to 520oC. Analysis of pyrolysis characteristics of sugarcane leaves are used thermogravimetric analysis (TGA), DTA, and GC-MS analysis. The results showed that the operating temperature had a significant effect on the pyrolysis process. The highest bio-oil found at 480oC, namely 34.33%. TGA results show that the decomposition process of sugarcane leaves is divided into 3 stages: 1) dehydration of water content occurs at <200oC, 2) active pyrolysis occurs from 200oC to 380oC, and 3) passive pyrolysis occurs at temperature from 380oC to 500oC. DTA results show that the thermal changes are affected by the pyrolysis heating rate. The highest bio-oil compounds are β-D-Glucopyranose 1,6-anhydro, acetic acid, and 2-Propanone 1-hydroxy-. This research proves that temperature has an important role in the pyrolysis process.References
Akoueson, F., Chbib, C., Monchy, S., Paul-Pont, I., Doyen, P., Dehaut, A., & Duflos, G. (2021). Identification and quantification of plastic additives using pyrolysis-GC/MS: A review. Science of the Total Environment, 773. https://doi.org/10.1016/j.scitotenv.2021.145073.
Alves, J. L. F., da Silva, J. C. G., Mumbach, G. D., Domenico, M. Di, Bolzan, A., Machado, R. A. F., & Marangoni, C. (2022). Evaluating the bioenergy potential of cupuassu shell through pyrolysis kinetics, thermodynamic parameters of activation, and evolved gas analysis with TG/FTIR technique. Thermochimica Acta, 711, 723–739. https://doi.org/10.1016/j.tca.2022.179187
Bach, Q. V., & Chen, W. H. (2017). Pyrolysis characteristics and kinetics of microalgae via thermogravimetric analysis (TGA): A state-of-the-art review. Bioresource Technology, 246, 88–100. https://doi.org/10.1016/j.biortech.2017.06.087
Branca, C., & Di Blasi, C. (2015). Thermogravimetric analysis of the combustion of dry distiller’s grains with solubles (DDGS) and pyrolysis char under kinetic control. Fuel Processing Technology, 129, 67–74. https://doi.org/10.1016/j.fuproc.2014.08.019
Cavalcanti, E. J. C., Carvalho, M., & da Silva, D. R. S. (2020). Energy, exergy and exergoenvironmental analyses of a sugarcane bagasse power cogeneration system. Energy Conversion and Management, 222. https://doi.org/10.1016/j.enconman.2020.113232
de Almeida, S. G. C., Tarelho, L. A. C., Hauschild, T., Costa, M. A. M., & Dussán, K. J. (2022). Biochar production from sugarcane biomass using slow pyrolysis: Characterization of the solid fraction. Chemical Engineering and Processing - Process Intensification, 179(February). https://doi.org/10.1016/j.cep.2022.109054
Dhyani, V., Kumar, J., & Bhaskar, T. (2017). Thermal decomposition kinetics of sorghum straw via thermogravimetric analysis. Bioresource Technology, 245(September), 1122–1129. https://doi.org/10.1016/j.biortech.2017.08.189
Fries, E., Dekiff, J. H., Willmeyer, J., Nuelle, M. T., Ebert, M., & Remy, D. (2013). Identification of polymer types and additives in marine microplastic particles using pyrolysis-GC/MS and scanning electron microscopy. Environmental Sciences: Processes and Impacts, 15(10), 1949–1956. https://doi.org/10.1039/c3em00214d.
Jamilatun, S., Aktawan, A., Budiman, A., & Mufandi, I. (2022). Thermogravimetric analysis kinetic study of Spirulina platensis residue pyrolysis. IOP Conference Series: Earth and Environmental Science, 963(1). https://doi.org/10.1088/1755-1315/963/1/012010.
Jamilatun, Siti, Mufandi, I., Evitasari, R. T., & Budiman, A. (2020). Effects of temperature and catalysts on the yield of bio-oil during the pyrolysis of Spirulina platensis residue. International Journal of Renewable Energy Research, 10(2), 678–686.
Jamilatun, Siti, Pitoyo, J., Amelia, S., Ma’arif, A., Hakika, D. C., & Mufandi, I. (2022). Experimental Study on The Characterization of Pyrolysis Products from Bagasse (Saccharum Officinarum L.): Bio-oil, Biochar, and Gas Products. Indonesian Journal of Science and Technology, 7(3), 565–582. https://doi.org/10.17509/ijost.v7i3.51566.
Kan, T., Strezov, V., & Evans, T. (2016). Effect of the Heating Rate on the Thermochemical Behavior and Biofuel Properties of Sewage Sludge Pyrolysis. Energy and Fuels, 30(3), 1564–1570. https://doi.org/10.1021/acs.energyfuels.5b02232.
Mishra, G., Kumar, J., & Bhaskar, T. (2015). Kinetic studies on the pyrolysis of pinewood. Bioresource Technology, 182, 282–288. https://doi.org/10.1016/j.biortech.2015.01.087.
Mishra, R. K., & Mohanty, K. (2020). Kinetic analysis and pyrolysis behaviour of waste biomass towards its bioenergy potential. Bioresource Technology, 311(May), 123480. https://doi.org/10.1016/j.biortech.2020.123480.
Moralı, U., Yavuzel, N., & Şensöz, S. (2016). Pyrolysis of hornbeam (Carpinus betulus L.) sawdust: Characterization of bio-oil and bio-char. Bioresource Technology, 221, 682–685. https://doi.org/10.1016/j.biortech.2016.09.081.
Mufandi, I., Treedet, W., Singbua, P., & Suntivarakorn, R. (2020). Efficiency of Bio - oil Production from Napier Grass Using Circulating Fluidized Bed Reactor with Bio - oil Scrubber. KKU Research Journal, 20(December), 94–107.
Naqvi, S. R., Tariq, R., Shahbaz, M., Naqvi, M., Aslam, M., Khan, Z., Mackey, H., Mckay, G., & Al-Ansari, T. (2021). Recent developments on sewage sludge pyrolysis and its kinetics: Resources recovery, thermogravimetric platforms, and innovative prospects. Computers and Chemical Engineering, 150, 107325. https://doi.org/10.1016/j.compchemeng.2021.107325.
Ren, S., Ye, X. P., Borole, A. P., Kim, P., & Labbé, N. (2016). Analysis of switchgrass-derived bio-oil and associated aqueous phase generated in a semi-pilot scale auger pyrolyzer. Journal of Analytical and Applied Pyrolysis, 119, 97–103. https://doi.org/10.1016/j.jaap.2016.03.013.
Strezov, V., Evans, T. J., & Hayman, C. (2008). Thermal conversion of elephant grass (Pennisetum Purpureum Schum) to bio-gas, bio-oil and charcoal. Bioresource Technology, 99(17), 8394–8399. https://doi.org/10.1016/j.biortech.2008.02.039.
Sugumaran, V., Prakash, S., Ramu, E., Arora, A. K., Bansal, V., Kagdiyal, V., & Saxena, D. (2017). Detailed characterization of bio-oil from pyrolysis of non-edible seed-cakes by Fourier Transform Infrared Spectroscopy (FTIR) and gas chromatography mass spectrometry (GC–MS) techniques. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 1058(January), 47–56. https://doi.org/10.1016/j.jchromb.2017.05.014.
Suntivarakorn, R., & Treedet, W. (2016). Improvement of Boiler’s Efficiency Using Heat Recovery and Automatic Combustion Control System. Energy Procedia, 100(September), 193–197. https://doi.org/10.1016/j.egypro.2016.10.164.
Treedet, W., Suntivarakorn, R., Mufandi, I., & Singbua, P. (2020). Bio-oil production from Napier grass using a pyrolysis process: Comparison of energy conversion and production cost between bio-oil and other biofuels. International Energy Journal, 20(2), 155–168.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License(CC BY SA 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Eksergi allows authors retain the copyright and full publishing rights without restrictions.