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ABSTRACT 

Most models used in reservoir simulation studies are on the scale of meters to hundreds of meters. However, increasing 

resolution in geological measurements results in finer geological models. Simulations study of particle movements 

provide an alternative to conventional reservoir simulation by allowing the study of microscopic and/or macroscopic 

fluid flow, which is close to the scale of geological models. In this paper, the FHP-II (Frisch, Hasslacher and Pomeau - 

FHP) model of lattice gas automata were developed to study fluid flow in order to estimate the properties of 

heterogeneous porous media. Heterogeneity simulated by placing solid obstacles randomly in a two-dimensional test 

volume. Properties of the heterogeneous porous media were estimated by the shape, size, number of the obstacles and 

by the distribution of the obstacles within the volume. Results of the effects of grain sizes and shapes, and its 

distribution in the porous media on the tortuosity, effective porosity, permeability and displacement efficiency were 

obtained. An investigation of fluid flow and comparison with laboratory experiment were also presented. Reasonably 

good agreement between the lattice gas automata simulation and laboratory experiment results were achieved. 

Keywords: heterogeneity, lattice gas automata, porous media, simulation  

 

I. INTRODUCTION 

Modeling of fluid flow in porous media for both single-phase and two-phase flows is of importance in petroleum 

engineering. Most models for reservoir simulations are on the scale of centimeter to hundreds of meters. Usually, 

increasing resolution in geological measurements result in finer geological models. Many numerical methods have been 

developed to simulate fluid flow in porous media. Numerical models of fluid flow in porous media can be developed 

from either microscopic or macroscopic properties. Attention is then typically focused on the determination of the 

petrophysical properties of the porous media and its performance based on the microscopic pore-space geometry.  Due 

to the intrinsic inhomogeneity of porous media makes the application of proper boundary conditions difficult. Hence, 

microscopic flow calculations have typically been achieved with idealized arrays of geometrically simple pores and 

throats. 

Because fluid flow in porous media is an important subject in petroleum engineering, numerous theoretical and 

experimental studies have attempted to investigate its performance. Rothman (1988), reported that although these 

investigations are diverse in approach, they can be classified broadly into three categories based on their use of 

microscopic data. First, some studies employ no microscopic data at all; these studies attempt instead to relate 

macroscopic rock properties, such as relating permeability to resistivity and porosity (e.g., Walsh and Brace, 1984; 

Paterson, 1983). In the second category are studies that collect microscopic data on pore-space geometry, usually via 

microscopic and digital image analysis (e.g., Lin and Cohen, 1982), and then compute macroscopic statistics from these 

microscopic data in attempt to relate their macroscopic rock properties to the statistical properties (e.g., Berryman and 

Blair, 1986; Lin et al., 1986). The third category is based entirely on microscopic rock geometry (e.g., Koplik et al., 

1986). 

The finite difference and finite element methods have been useful for simulating single-phase and two-phase flow in 

porous media, and have been used extensively. Numerical methods based on the finite difference approximation of the 

governing equations are probably the most commonly used tools for simulating the single-phase and two-phase flow 

process, and predicting their performance. In practice, the porous media are usually represented by discrete grid block, 

and transfer of each constituent being tracked is computed across each block face for a succession of small-time 

increments. Finite difference or finite element methods use floating-point numbers to describe properties, a large 

number of grid blocks are often required, and appropriate boundary conditions are difficult to be applied. As a result, 

they may not be the most efficient numerical method for this problem.  
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Despite this extensive study, Dullien (1979), shown that theoretical estimates of macroscopic rock properties are often 

in error by as much as an order of magnitude or more. The lack of success of these theoretical models, however, could 

be the result of faulty flow models, inadequate representations of pore space, or both. In this research, a different 

approach is used to model the fluid flow in heterogeneous porous media. The difference between this work and the 

existing theoretical literature (finite element and/or finite difference methods) on fluid flow in porous media lies in the 

numerical method used to model the fluid flow. The numerical method used is Lattice Gas Automata. This alternative 

method was first introduced by Hardy et al. (1973; 1976) and was extended by Frisch et al. (1986; 1987), for the 

computational of fluid dynamic. The method is based on the knowledge of microscopic rock geometry, which falls in 

the third category detailed above. This is due to the microgeometric space as the Navier-Stokes equations are solved 

numerically with appropriate boundary conditions. Therefore, the results obtained with the lattice gas automata should 

agree well with the experimental results insofar as the microscopic model adequately represents the real porous media. 

Hence, lattice gas automata methods are applicable to the study of fluid flow in porous media. 

 

II. METHODS 

2.1. Lattice Gas Automata 

In 1986, Frisch, Hasslacher and Pomeau introduced a lattice gas model based on a hexagonal grid (FHP-models). In the 

FHP-models each of the particles travels with unit speed and an exclusion principle is applied allowing only one 

particle to travel in each direction along a link. Rest particles can also be introduced into the model. A rest particle 

remains at rest at a site, link, but is able to take part in a collision with particles arriving at the site. The six link 

directions can be seen in Figure 1, and the velocity vectors (ci) is given by Equation 1. 
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Figure 1. The hexagonal lattice used in the FHP models 

Source: Frisch et al., 1986 

 

The simplest of the FHP models is the FHP-I in which there are no rest particles and gives a total of 5 collisions out of 

the 64 possible in-states. The second is FHP-II model that introduces a rest particle and allows the particles to collide 

according to the rules that six rest particle creation collisions. This model gives 22 possible interactions out of a 

possible total of 128. The third is FHP-III model that extensions of FHP-II, which allow all collision conserve mass and 

momentum at each site and give 76 possible collisions. 

At the start of each time step the particles at each site collide according to the particular collision rules for the model 

being used - the collision stage. After the collision stages each particle travels in a straight line along one of the lattice 

links, unless it is a rest particle, until it arrives at the next link - the propagation (streaming) stage. The particles arriving 

at their new sites then collide at the beginning of the next time step. In the FHP models, each link of the hexagonal 

lattice may carry one particle (of the given mass/momentum/energy state) at any one time, this called exclusion 

principles. The particles of fluid site on a hexagonal lattice can be seen in Figure 2. 

Figure 2, shows that each arrow represents a particle of unit mass moving in the direction given by the arrow. The 

lattice is initially prepared so that no more than one particle is moving with a particular velocity at a particular site on 

the lattice Figure 2a. Then, the particles hop and scatter can be seen in Figure 2b; each particle moves one lattice unit 

in the direction of its velocity. Scattering can be seen in Figure 2c; if two or more particles arrive at the same site, they 

can collide. Some collisions cause the particles to scatter that is their velocity change. In all cases, however, collisions 

may change neither the total number of particles nor the vector sum of the velocities. The only collisions that have 

changed the configuration of particles are located in the middle row. In other words, mass and momentum are 

conserved. The particle dynamics depicted in Figure 2 expressed by the equation, 
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Fig. 1- The hexagonal lattice used in the FHP 
models (Frisch et al., 1986) 
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Here the time t is integer-valued and the duration of a time step is taken to be unity. The quantities n = (n1, n2, … , n6) 

are Boolean variables that indicate the presence (ni=1) or absence (ni=0) or particles moving from a lattice site situated 

at position x to the neighboring site situated at position x + ci, where the particles move with unit speed in the directions 

given by Equation 1. The function i is called the collision operator. Its describes the change in ni(x,t) due to collisions, 

and takes on the values 0, 1 and –1. It is the sum of quantities that may be written as Boolean or logical, expressions, 

one for each possible collision. 

 
Figure 2. One-time step in the evolution of the FHP models: (a) initial condition; (b) propagation step of the 

particles; (c) result of collisions step of the particles  
Source: Rothman et al., 1997 

 

There are three types of FHP model of lattice gas automata, i.e., FHP-I, FHP-II, and FHP-III, which have been 

developed, based on the particle’s usage (with or without rest particles) and the possible outcomes collision 

configurations occurred (Frisch et al., 1986; Rothman et al., 1997). The simplest of the FHP models is the FHP-I in 

which there are no rest particles, and gives 64 possible in-states. The FHP-II model introduces a rest particle and allows 

the particles to collide according to the following rules, and this gives 128 possible interactions outcomes. While, the 

FHP-III model is an extension of FHP-II, which allows all collisions conserve mass and momentum at each site, and 

gives 76 possible collisions. This work used the FHP-II model of lattice gas automata to study microscale heterogeneity 

of a porous media. 

 

Zanetti (1989), defined a lattice-gas automata as a particle of gas that occupy the site of a regular lattice and can hop 

from the lattice sites to the nearest neighbors.  Lee et al. (1993), used the lattice gas automata method for hydrodynamic 

calculations. The lattice gas automata method employs interactions of discrete fluids on a regular lattice analogous to 

microscopic molecular dynamics. Therefore, a complex system can be simulated by simple rules of particle interactions 

at a lattice. Macroscopic variables are then recovered by averaging over a spatial and temporal space.  Computationally 

this method has two main advantages over conventional methods. Firstly, the mathematical operations are mainly bit 

manipulation, which provides memory efficiency, thereby easily simulating a very large system. Secondly, the 

algorithm is inherently parallel. While, Orme (1996), showed that the lattice gas automata model has been devised to 

assist in understanding the properties of real fluid and it could provide an alternative to computational fluid dynamic 

analysis for predicting fluid flow. 

2.2. Simulation Model 

In the FHP-II model of lattice gas automata used, each site of two-dimensional hexagonal lattice particle can move into 

any of six directions. The particles of unit mass and unit velocity moving along the lattice links of unit length 

connecting the node to its six nearest neighbors is expressed by Equation 1 of Frisch et al. (1986) and Rothman et al. 

(1997). At a given time tn, the state of the lattice xij is defined by, 

  6 ,...,2 ,1   ),(),(  itxntxn nijinij
   (3) 

where ni(xij,tn) is a Boolean variable; ni(xij,tn) = 1 if the i-th cell is occupied and 0 if it is vacant. Evolution of the system 

is specified by the collision and propagation rules for particles can be seen in Figure 2. One-particle distribution 

function at each node of the 6-bit state, fi (x, t) gives the probability of finding a particle with velocity ci at position x 

and time t. Furthermore, updating of f includes two processes, i.e., collision is given by Equation 4, and propagation is 

given by Equation 5, respectively, where i signify the particle velocity change due to collision. 

fi(x, t) =  fi(x, t) + i ( f (x))     (4) 

fi(x, t) =  f(x + ci , t + 1)     (5) 
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The collision phase of each time step is the process of transformation between the input and output states of the lattice 

sites under a set of collision rules. Collision rules are expressions by Boolean variable, which define the relationship 

between the input and output states of a site and updated according to Equation 6. 

)},({),(),(


 nijinijiniji txntxntxn    (6) 

where i is the collision function which takes the value of 1 or 0, and  is the random variable ( = 1).  Here tn
-
 and tn

+
 

stand for the time of pre- and post-collision. The microscopic Boolean states of all the particles are averaged to obtain 

density and velocity using equations,  
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The pressure is given by, 
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While, viscosity of fluid is given by equation of d’Humieres et al. (1986),  
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where d is the mean density per link (= /7). Viscosity is a function of the collision rules used and the density of the 

fluid particles. 

The permeability coefficient (k), which a measure of fluid conductivity through the porous media in this simulation is 

given by Carman-Kozeny equation, which includ the factors of effective porosity and tortuosity,  

22
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       (11) 

where c is the Kozeny coefficient. The effective porosity (eff) of the porous media is given by equation, 

   xaxaax CCeff   12 23    (12) 

where 
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Cx
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      (13) 

and a is constant (a = 0.3), and C  is a critical porosity or percolation threshold, respectively.  Tortuosity ( ) of the 

porous media is determined using equation,  

1)1(8.0        (14) 

and specific surface area (S) is determined by equation, 

 ln 
0R

z
S       (15) 

where z is two-dimensional space (z = 2), and R0 is the hydraulic radius of the obstacles. Furthermore, the displacement 

efficiency (ED) is predicted by equation, 

100% x 
p

p

D
V

N
E       (16) 

where Np is the oil recovery obtained at the end of the displacement process, and the pore volume (Vp) of porous media 

is calculated by equation, 
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effbp VV         (17) 

where eff is an effective porosity as given by Equation 12. 

 

III. RESULTS AND DISCUSSION 

3.1. Constructing Fluid Flow in a Heterogeneous Porous Media 

The simulation to construct a fluid flow in heterogeneous porous media was conducted on the 800x600 lattice units. A 

method of constructing a model of heterogeneous porous media is to place solid obstacles randomly in a two-

dimensional test volume. Black dots indicate solid obstacles formed. The obstacles can have irregular shapes caused by 

overlapping of the obstacles. The fluid was forced to move from the left side to the right side of the porous media model 

by applying a force on the particles. Density of fluid particles per lattice site was 1.54 to 2.25, which provides a good 

approximation with Frisch (1986), where the range was from 1.5 to 3.5 particles per lattice site. Velocity field it its 

position is displayed by black arrows. At each location, the length of the arrow represents the amplitude of the velocity 

and the direction of the arrow points to the direction of the flow. Visualization for each arrow was an average of 10x10 

lattice sites. 

The simulation results to construct a heterogeneous porous media by spherical and rectangular shapes for each grain 

size can be seen in Figure 3 and Figure 4. It shows that the pore configuration is complex, but the pores are relatively 

uniformly distributed. Complex pore configurations arise from the interaction of packing (relates with the grains shape 

arrangement) and grain size distribution factors of the framework fraction. System pore openings of the interconnected 

pores with small pore opening and larger pore opening to represent the porosity and permeability of porous media may 

occur in such porous media constructed. The streamline of the fluid flow through porous media to distinguish the 

direction of the flow was also observed.  

 

(a) Grain size 10 lu 

 

(b) Grain size 20 lu 

 

(c) Grain size 30 lu 

Figure 3. The example of fluid flow simulated in heterogeneous porous media of spherical obstacles 

with porosity 20% for different grain sizes at 8000-time steps 

 

 

(a) Grain size 10 lu 

 

(b) Grain size 20 lu 

 

(c) Grain size 30 lu 

Figure 4. The example of fluid flow simulated in heterogeneous porous media of rectangular obstacles 

with porosity 20% for different grain sizes at 8000-time steps 

 

The majority of the flow follow several winding paths in general can be seen in Figure 3 and Figure 4. However, there 

are some dead regions where flow is very slow. The flow velocity increases at the locations where the size of pores 

decreases. The velocity field in the figures also shows that the flow tends to pass through from the dead regions and 

continuously flow through the outlet (right side) of the porous media. Furthermore, Figure 3 and Figure 4 also shown 

that the physical models of heterogeneities that can be constructed by this simulation are heterogeneous isotropic 

distribution of permeability, and anisotropic distribution of heterogeneous permeability, as proposed by Gao (1994). 
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Anisotropic implies that the variation of porosity and permeability values of porous media are different in x and y 

directions. 

Based on the simulation results, indicate that the complex geometry of heterogeneous porous media was successfully 

formed by FHP-II model of the lattice gas automata. The complex geometry of heterogeneous porous media can be 

defined from the porosity point of view. Complex geometry is that type of porous media with heterogeneous porosity, 

which depends on its solid particle shape and size. The representation obtained from this simulation is promising and 

shows an attractive achievement, since results of the simulation seem to predict the system’s critical parameter, i.e., 

permeability for different types of porous media with respect to their properties. The prediction shows that the 

simulation applied has a wide range of applicability for different geometry shapes. Furthermore, the porous media and 

porosity constructed are dependent on the distribution of grain size and shape, where the porosity increases as the grain 

sizes increases. The distribution of grain size and shape also affects on the packing arrangements of solid obstacles and 

velocity field of the fluid flow. 

3.2. Properties of a Heterogeneous Porous Media 

As a physical quantity, the most intuitive and straightforward definition of tortuosity is the ratio of the average length of 

true flow paths to the length of the system in the direction of macroscopic flux. By this definition, tortuosity depends 

not only on the microscopic geometry of the pores, but also on the transport mechanism under consideration. The 

comparison of simulated tortuosity for spherical and rectangular obstacles can be seen in Figure 5.  

 

(a) Spherical Obstacles 

 

(b) Rectangular Obstacles 

Figure 5. Comparison of simulated tortuosity of the porous system as a function of porosity  

for spherical and rectangular shaped obstacles with different grain sizes 
 

The comparison of simulation results of tortuosity both spherical and rectangular obstacles for each grain sizes can be 

seen in Figure 5. It is shown that the trend lines of both obstacle shapes are equal and gives the straight lines curves. 

The grain sizes 10 lattice units give relative higher results of tortuosity values than grain sizes 20 lattice units and 30 

lattice units. The reason is that the porous media constructed by the 10 lattice units more heterogeneous than by the 

others grain sizes. It is concluded that for a given obstacle configurations the tortuosity simulated with different grain 

sizes and shapes were found to be close to each other.  
 

 

(a) Spherical Obstacles 

 

(b) Rectangular Obstacles 

Figure 6. Comparison of simulated effective porosity as a function of porosity  

for spherical and rectangular obstacles with different grain sizes 
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The comparison of simulated effective porosity of porous media as a function of porosity for both spherical and 

rectangular obstacles can be seen in Figure 6. It shows that even though the grain sizes and shapes of solid particles are 

different, but the effective porosity results for each grain size were quite similar. The effective porosity value for grain 

size 10 lattice units is the lowest compared to the 20 lattice units and 30 lattice units, respectively. This is due to the 

absolute porosity of porous media constructed by grain size 10 lattice units is also lowest than the others.  

 

(a) Spherical Obstacles 

 

(b) Rectangular Obstacles 

Figure 7. Comparison of the simulated porosity results of spherical and rectangular obstacles 

 

From the reservoir engineering standpoints, the effective porosity results indicate a true, where commonly the effective 

porosity in the interconnected pores of porous media is lower than its absolute porosity. To show agreement with the 

simulation results, the effective porosity and absolute porosity simulated of the porous media constructed are then 

compared, can be seen in Figure 7. The figures were taken on the absolute porosity of the porous media constructed by 

the spherical and rectangular obstacles have grain size 30 lattice units. 

Based on the simulation results in Figure 6 and Figure 7, it was concluded that the effective porosity is a direct 

function of the grain shape and size of the interconnected pores. The correlation of effective porosity of porous media as 

a function of absolute porosity was found. The simulated effective porosity yields a good accuracy results, and indicate 

a more reliable results for the heterogeneity and anisotropy of the porous media. 

Permeability is the other main concern in this simulation besides effective porosity. Permeability is such an important 

property of porous media from the reservoir and production engineering standpoint. The importance of permeability in 

oil reservoir is not only in the actual volume of oil, but the rate at which the oil will flow through the reservoir. This will 

directly affect the economic potential of a well. Comparison of the simulated dimensionless permeability (k/Ro
2
) of the 

porous system as a function of effective porosity ( eff) for spherical and rectangular obstacles with different grain sizes 

can be seen in Figure 8. 

 

(a) Spherical Obstacles 

 

(b) Rectangular Obstacles 

Figure 8. Comparison of simulated dimensionless permeability (k/Ro
2
) of the porous system as a function of 

effective porosity ( eff) for spherical and rectangular obstacles with different grain sizes 
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The comparison of simulated dimensionless permeability (k/Ro
2
) of the porous system as a function of effective 

porosity ( eff) for spherical and rectangular obstacles with different grain sizes can be seen in Figure 8. The findings 

indicate that the dimensionless permeability results of both spherical and rectangular shapes for each grain sizes were 

quite similar. The values of dimensionless permeability of spherical obstacles were relatively higher than the values for 

rectangular obstacles. This is due to the fact that the effective porosity value of spherical obstacles is also higher than 

the one for rectangular obstacles. However, the differences in values of the permeability results of both grain shapes are 

relatively close. It shows that the factors in which influence effective porosity, i.e., grain size and shape, and their 

distributions also have a direct effect on the permeability of the porous system. 

 
Figure 9. Comparison of the permeability results between laboratory experiment and simulation 

 

To validate the permeability of the simulation results, a laboratory experiment was also conducted.  The laboratory 

experiment was conducted using a core sample for different values of porosity with grain size 20-40 mesh. The 

comparison of permeability results by laboratory experiment and this simulation for each grain size of obstacles as a 

function of porosity can be seen in Figure 9. From Figure 9 it is obvious that the system is divided into two regions 

based on the validity of Carman-Kozeny equation used in the simulation. The results obtained in the simulation were 

comparable with the laboratory experimental results for that region of porosity having a value of 35% and higher. In 

this region, all grain size shows a good approach to those data points obtained from the laboratory experimental. 

However, at a lower porosity range, namely at a region of porosity lower than 35%, results of the simulation were 

unsatisfactory compared to the laboratory experiment results. All grain sizes failed to approach the behaviour of the 

laboratory experimental results. It could be attributed to the fact that the Equation 11 to determine the permeability 

value has a validity range, and it is inapplicable for the entire range of porosity. As the permeability value is essential 

for simulation calculation, any deviation in the prediction of Equation 11 can lead to a large deviation in the final 

prediction of the simulation, which could affect its performance to give a good prediction. 

The simulation results have been found to be comparable with the experimental data points for porosity ranges of 35% 

to higher, where the relative error does not exceed less than 10%. Relative error gradually increases with decreasing 

values of porosity ranges lower than 35%, where the average error varies from 10% to 25%, respectively. It is worthy to 

bring to attention Equation 11 where parameters involved in this equation relate to each other. The Kozeny coefficient, 

c, is the function of tortuosity and shape factor. Surface area, as it is known has a value which is related inversely to 

grain size, where large grain size has a lower surface area and vice versa. Results of the simulation can be seen in 

Figure 9 agree with this fact through the value of permeability obtained from Equation 11. From this outcome, it could 

be concluded that the Carman-Kozeny equation used in this simulation to estimate permeability has a limited 

application that limits its validity, which depends on the porosity ranges. For low porosity ranges (less than 35%), 

permeability determined from the simulation has a lower value compared with that obtained from the laboratory 

experiment, such an outcome was observed for all grain sizes. 

However, the results from this simulation is similar with Willy’s work (Smith et al., 1975) which used a capillary tube 

for flow network, and also Rothman’s work (Rothman, 1988), where a pore-space that contains very narrow channels 

may produce significant errors in determining permeability if the bulk flow is dominated by narrow passageways. This 

problem is for practical purposes, inconsequential for flows through tubes of large radii. However, if the radius of a tube 

is small, then the effect of the resulting permeability could be substantial due to the quadratic dependence of 

permeability on the radius. The accuracy of the results is in the neighborhood of 10% to 25%, with errors decreasing as 

the grain size increases.  
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The permeability of the simulation results could be still applicable and relevant from the reservoir engineering point of 

view. This is because there are materials of real porous media that has a lower permeability value, especially for 

sandstone and limestone formations (Collins, 1976). Sandstone has a lower permeability of 5x10
-4

 darcy (0.5 mD), and 

limestone has lower permeability of 2x10
-4

 darcy (0.2 mD). Cole (1969), has also reported on typical reservoir rocks 

which has a lower permeability, of 2 mD (Bradford sandstone, Pennsylvania), 23 mD (Upper Strawn sandstone, Texas), 

and 27 mD (Bartlesville sandstone, Oklahoma). In comparison, the simulation results of permeability also have lower 

values of 4.39 mD, 4.45 mD, and 4.61 mD being for grain size 10 lattice unit, 20 lattice unit and 30 lattice unit, 

respectively. 

 

3.3. Displacement Efficiency 

In a displacement process, oil recovery depends on the volume of porous media or reservoir contacted by the injected 

fluid. A quantitative measure of this contact is the displacement efficiency (ED). Displacement efficiency of the 

displacement process in this research then could be defined as the fraction of pore volume oil displaced by the carbon 

dioxide as the injected fluid, or the fraction of pore volume oil that has been contacted by the carbon dioxide. Hence, it 

is clear that the displacement efficiency is a function of time in a displacement process. Furthermore, from this 

sequence of displacement efficiency, the simulation was conducted to study the effects of properties of porous media on 

the displacement efficiency of displacement process with particular emphasis on the effect of porosity and permeability. 

The simulation results of displacement efficiency, where oil is displaced by carbon dioxide in the immiscible 

displacement process can be seen in Figure 10 and Figure 11, each for spherical and rectangular shapes, respectively. 

Summary of the effective porosity and permeability effects on displacement efficiency results of spherical and 

rectangular shapes can be seen  in Figure 12. 

 

(a) Eff. Porosity = 47.56% 

 

(b) Eff. Porosity = 6.126% 

Figure 10. Simulated displacement efficiency of spherical shapes for effective porosity of 47.56% and 6.126% 
 

 

(a) Eff. Porosity = 47.173% 

 

(b) Eff. Porosity = 6.001% 

Figure 11. Simulated displacement efficiency of rectangular shapes for effective porosity of 47.173% and 6.001% 
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(a) Effective Porosity 

 

(b) Permeability 

Figure 12. . Summary of simulated displacement efficiency for spherical and rectangular shapes as a function of: 

(a) effective porosity; and (b) permeability of porous media 

 

From Figure 12a, it is shown that if the porous media has high values of effective porosity, the displacement efficiency 

that could be obtained in the displacement process would also be higher. This is true for both spherical and rectangular 

shapes. The trend of these curves shows a rapid increase in the value of effective porosity from 6.126% to 18.034% in 

spherical shapes, and 6.001% to 17.649% in rectangular shapes. The displacement efficiency value also showed an 

increase from 83.49233% to 93.73217% for spherical shapes and 83.16931% to 93.61726% for rectangular shapes. 

However, the effective porosity value above of 18.034% in spherical shapes and above 17.649% in rectangular shapes, 

show a relatively slow and stable increase in the displacement efficiency value. Based on the effective porosity values 

of the porous media, the displacement efficiency had ranges of 83.49233% to 97.00252% for spherical shapes, and 

83.16931% to 96.98614% for rectangular shapes. Hence, it shows that the displacement efficiency for spherical shapes 

is relatively higher compared with rectangular shapes. It demonstrates that the shapes and sizes (pore geometry) and 

their distribution in porous media could affect the displacement efficiency. 

In Figure 12b, shown the simulated displacement efficiency for spherical and rectangular shapes versus permeability of 

porous media is presented. It is shown that the permeability of porous media could also affect the displacement 

efficiency. A proportional relationship is found to exist, where, as the permeability values increase, displacement 

efficiency percentages also increase. Trend of the curves was quite similar to that presented in Figure 13a. However, it 

is worth clarifying that at permeability ranges of 4.44143 mD to 38.83125 mD in the spherical shapes and 4.385745 mD 

to 37.95410 mD in rectangular shapes, the curves increase rapidly after that the trend of the curves became relatively 

linear. It demonstrates the fact that permeability of porous media is a function of pore size and shape distribution of 

solid grains in the porous media. It can be concluded that permeability can affect strongly the distribution of the fluids 

in the pores. Hence, it was also demonstrated that changing of porous media model from low to high permeability 

would increase the displacement efficiency. 

 

 

Figure 13. Comparison of displacement efficiency results from the simulation and laboratory experiments 
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To validate the displacement efficiency values, which resulted from the simulation, a comparison between the 

simulation results and those obtained from the laboratory was made using a core model experiment. The resultsq can be 

seen in Figure 13. Displacement process in the laboratory was conducted with a core model having porosity of 54% 

and permeability of 1.28 Darcy, while for simulation the porosity was 47.56% and permeability of 744.2541 mD. From 

Figure 13, it can be seen that the trend of both curves is very similar, with the difference being only 0.88483%. The 

displacement efficiency estimated result from the simulation was 97.00252%, while the laboratory experiment was 

97.88735%. The displacement efficiency result from the laboratory experiment is higher compared with the simulation 

result. Based on Figure 13, it is obvious that the estimation of simulated displacement efficiency was in excellent 

agreement with the results of the laboratory core model experiment. The estimations closely matched of the 

experimental data with a difference of less than 5%. Furthermore, it can be concluded that the estimation of 

displacement efficiency by this simulation model is an adequate representation of the macro-level and hence real porous 

media as in the laboratory experiment.  

 

IV. CONCLUSION 

Geometry of fluid flow in a heterogeneous porous media could be simulated well by the FHP-II model of lattice gas 

automata. The physical models of heterogeneities constructed are heterogeneous isotropic distribution of permeability 

and anisotropic distribution of heterogeneous permeability. The properties of the porous media were estimated by the 

shape, size, number of obstacles and by the distribution of the obstacles within the volume. In determining the 

tortuosity, effective porosity and permeability were found to be strongly affected by grain shape and size, as well as 

their distribution in the porous media. However, it is obvious that to determine permeability using the Carman-Kozeny 

equation it is recommended to be applied to a porosity range of 35% and higher. This is because it was found that for 

lower porosity range (less than 35%) the permeability estimated was lower than obtained from the laboratory 

experiment.  

Based on the simulation results and the discussion on estimation displacement efficiency, it is concluded that in porous 

media, with different values of effective porosity and permeability could affect on the displacement efficiency of the 

displacement process. In the porous media that has higher effective porosity and permeability values, the displacement 

efficiency that could be obtained in the displacement process would also be higher. Estimation of the simulated 

displacement efficiency was in excellent agreement with the results of the laboratory experiment, with a difference of 

less than 5%. The estimation of displacement efficiency by this simulation model was an adequate representation of the 

macro-level and hence real porous media as obtained in the laboratory experiments.  

 

NOMENCLATURE 

c = Kozeny coefficient 

ci = the unit velocity in the i direction (i = 1, 2, …, 6) 

d  = mean density per link (= /7) 

ED = displacement efficiency 

f = probability of collision 

k = permeability of porous media 

Np = oil recovery 

p = pressure 

S = specific surface area  

t = time step 

i  = particle velocity change due to collision. 

tn
-
 ; tn

+
  = stand for the time of pre- and post-collision 

Vp = pore volume of porous media 

x  = lattice position 

 = local density 

  = random variable ( = 1) 

eff = effective porosity of porous media 

 = tortuosity of porous media 
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