Beneficiation of Coal from Bonehau, Mamuju Regency of West Sulawesi Province Using Column Flotation

Gabriel Wendiarto William, Sufriadin Sufriadin

Abstract


Coal is a heterogeneous substance with organic and inorganic and associated with a number of mineral matters that can reduce coal quality. Coal combustion will convert mineral matters into ash content that can affect furnace performance. Coal beneficiation is the process of improving coal quality with a number of methods to reduce ash content and increase coal calorific value. One of the coal beneficiation method is flotation which involves a solid phase in the form of coal particles, a liquid phase in the form of water, and a gas phase in the form of air bubbles as factors that affect the flotation process. This study aims to determine the coal quality, and to analyze the effect variables on ash content and calorific value. The methods used in this study were microscopic optical and X-Ray Diffraction (XRD) analysis for coal mineralogy and proximate analysis and calorific value analysis for coal quality. The column flotation method using flotation time, grain size, and collector dosage as research variables. The results of coal mineralogy analysis showed the coal sample contained of quartz, pyrite, moganite, and graphite with 5.07% of ash and 5,207 cal/g of calorific value. Results of the flotation experiment reveal that the lowest ash content were 2.83% which was found with the grain size of 60 mesh, a flotation time of 10 minutes, and 20 mL of collector dose. The highest calorific value analysis results were 5,835 cal/g which obtained at a grain size of 100 mesh, flotation time of 15 minutes, and a collector dose of 20 mL.


Keywords


Column Flotation, Coal Beneficiation, Ash Content, Calorific Value

Full Text:

PDF

References


Aladin, A. (2009). Penentuan Rasio Optimum Campuran CPO: Batubara dalam Desulfurisasi dan Deashing Secara Flotasi Sistem Kontinyu. Jurnal Rekayasa Proses, 3(2), 50-56.

Ayhan, F. D., Abakay, H., & Saydut, A. (2005). Desulfurization and Deashing of Hazro Coal via a Flotation Method. Energy & Fuels, 19,

-1007.

Ding, L. P. (2009). Investigation of Bituminous Coal Hydrophobicity and its Influence on Flotation. Energy Fuels, 23, 5536-5543.

Faizal, M., Saputra, M., & Zainal, F. A. (2015). Pembuatan Briket Bioarang dari Campuran Batubara dan Biomassa Sekam Padi dan Eceng Gondok. Jurnal Teknik Kimia, 21(4), 28-39.

Fitriyanti, R. (2016). Pertambangan Batuabra: Dampak Lingkungan, Sosial dan Ekonomi. Jurnal Redoks, 1(1), 34-40.

Haryono, D., Darmabakti, I., Oediyani, S., & Harjanto, S. (2020). Monitoring of Column Flotation Process in Collection Zone using ECVT with the Effect of Collector and Frother Doses to Recovery. Mesin, 11(1), 1-7.

Jaya, D., Widayati, T. W., Mustika, R. Y., & Suwardi, H. N. (2020). Peningkatkan Kualitas Tailing Batubara Dengan Metode Flotasi Menggunakan Biosurfaktan dari Lerak (Sapindusrarak De Candole). Eksegi, 17(1), 20-28.

Nukman, & Poertadji, S. (2006). Pengurangan Kadar Abu dan Sulfur pada Batubara Sub Bituminus dengan Metode Aglomerasi Air-Minyak Sawit. Jurnal Sains Materi Indonesia, 7(3), 31-36.

Nursanto, E., Idrus, A., Amijaya, H., & Pramumijoyo, S. (2011). Keterdapatan dan Tipe Mineral pada Batubara serta Metode Analisisnya. Jurnal Teknologi Technoscientia, 4(1), 1-10.

Oni, O. S., & Ehinola, A. O. (2017). Estimation and Assesment of Free Swelling Index and Some Petrographic Properties from Chemical Analysis of Coals Across River Niger. Petroleum and Coal, 59(3), 273-287.

Pasymi. (2008). Batubara. Padang: Bung Hatta University Press.

Sokolovic, J., & Miskovic, S. (2018). The Effect of Particle Size on Coal Flotation Kinetics: A Review. Physicochemical Problems of Mineral Processing, 54(4), 1172-1190.

Sugiarto, W., RA, T. L., & Winarti. (2023). The Effect of Ash Content on Coal Quality in the Labanan Formation in Berau District, East Kalimantan Province. KURVATEK, 8(1), 1-6.

Vapur, H., Bayat, O., & Ucurum, M. (2010). Coal Flotation Optimization Using Modified Flotation Parameters and Combustible Recovery in a Jameson Cell. Energy Conversion and Management (51), 1891-1897.

Xia, W., Xie, G., & Peng, Y. (2015). Recent Advances in Beneficiation for Low Rank Coals. Powder Technology, 277, 206-221.

Yilmaz, S., Cuhadaroglu, D., & Toroglu, I. (2019). Correlation between Ash Content of Size & Density Fractionated Coal Samples and their Corresponding Calorific Values. OP Conference Series: Earth and Environmental Science, 362(1), 1-7.




DOI: https://doi.org/10.31315/jmept.v5i1.12196

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Sufriadin Sufriadin

Journal of Metallurgical Engineering and Processing Technology indexed by:

 




Journal of Metallurgical Engineering and Processing Technology (JMEPT)



Department of Metallurgical Engineering, UPN "Veteran" Yogyakarta
Metallurgical Research and Development Centre (MRDC)-UPNVY
Gd. Urip Sumohardjo Lt. 2
Jl. Babarsari No. 2, Tambakbayan, Yogyakarta 55281


View My Stats