Study of the Effect of Penetrant Temperature Variations on Corrosion Sensitivity of 7075 Alumnium material using the Liquid Penetrant Test Method at PT. Dirgantara Indonesia (IAe)

Authors

  • Prayogi Yudhistira Universitas Pembangunan Nasional "Veteran" Yogyakarta
  • Imam Prabowo Universitas Pembangunan Nasional "Veteran" Yogyakarta
  • Yongki Yunardi PT Dirgantara Indonesia

DOI:

https://doi.org/10.31315/jmept.v5i2.14293

Keywords:

Liquid Penetrant Test, Fluorescent, discontinuity, Physical metallurgy

Abstract

Non Destructive Test is a testing and analysis method carried out to evaluate and detect differences in characteristics or defects that arise in materials, components, structures or systems without causing damage to the part being tested. Liquid Penetrant Test is a Non-Destructive Test method using Liquid Penetrant containing Fluorescent by utilizing power capillarity which is the ability of the penetrant liquid to enter the gap discontinuity and developer work to lift the liquid back up which penetrates into cracks so that defects and corrosion can be detected. The purpose of this test is to determine discontinuities in the fabricated material by using 3 variations of penetrant temperature 5℃, 10℃ - 38℃, and 75℃ using 2 pieces of 7075 Aluminum material. Experiments carried out at normal temperatures (10℃-38℃) show clear indications of the material. while experiments using temperatures of 5℃ and 75℃ will make the indication on the material unclear (false indication) due to various factors such as viscosity, dwell time, penetration, developing.

 

References

Ashok Reddy, K. (2017). Non-Destructive Testing, Evaluation of Stainless Steel Materials. Materials Today: Proceedings, 4(8), 7302–7312. https://doi.org/10.1016/j.matpr.2017.07.060

Atomic, I., & Agency, E. (2000). Liquid Penetrant and Magnetic Particle Testing at Level 2. 11.

Bayrak, G., & Müştak, H. (2023). The Characterization of Welded AA 5005 Alloy with AA 5356 Filler Metals According to Slow Welding Rate Using by MIG Welding Technique. International Journal of Computational and Experimental Science and Engineering, 9(4), 346–353. https://doi.org/10.22399/ijcesen.1357384

Bina, D., Kompetensi, S., & Pelatihan, D. A. N. (2018). BUKU INFORMASI MELAKUKAN PENETRANT TEST ( PT ). 1–41.

Capabilities, G., Liquid, O. F., Inspection, P., Inspection, L. P., Inspection, L. P., Use, W., Penetrant, L., Inspection, L. P., & Openings, R. F. (1930). CHAPTER 2 LIQUID PENETRANT INSPECTION METHOD SECTION I LIQUID PENETRANT ( LT ) INSPECTION METHOD.

Irek, P., & Sania, J. (2016). Material factors in relation to development time in liquid-penetrant inspection. Part 2. Investigation programme and preliminary tests. Archives of Metallurgy and Materials, 61(3), 1351–1362. https://doi.org/10.1515/amm-2016-0276

Jiménez-Becerril, J., González-Juárez, J. C., & Contreras-Bustos, R. (2013). Penetrant liquid waste degradation by radiocatalysis. Journal of Residuals Science and Technology, 10(4), 171–177.

Kalinichenko, A. N., Lobanova, I. S., & Kalinichenko, N. P. (2019). Comparison of the quality of flaw detection materials using samples developed for liquid penetrant testing. Materials Science Forum, 970(2), 130–136. https://doi.org/10.4028/www.scientific.net/MSF.970.130

Kompetensi, P. B. (2018). PELATIHAN BERBASIS KOMPETENSI MELAKUKAN PENETRANT TEST ( PT ). 1–14.

Larson, B. (2002). Study of the Factors Affecting the Sensitivity of Liquid Penetrant Inspections: Review of Literature Published from 1970 to 1998. Federal Aviation Administration William J. Hughes Technical Center’s Full-Text Technical Reports Page: Actlibrary.Tc.Faa.Gov in Adobe Acrobat Portable Document Format (PDF), January, 59.

Manikandan, K. R., Ashwin Sivagurunathan, P., Ananthan, S. S., Arul

Marcel Moshi, A., & Sundara Bharathi, S. R. (2020). Study on the influence of temperature and vibration on indications of liquid penetrant testing of A516 low carbon steel. Materials Today: Proceedings, 39(xxxx), 1559–1564. https://doi.org/10.1016/j.matpr.2020.05.572

Mix, P. E. (2004). Liquid Penetrant Tests. Introduction to Nondestructive Testing, 221–245. https://doi.org/10.1002/0471719145.ch6

Popescu, D., Anania, F. D., Cotet, C. E., & Amza, C. G. (2013). Fully-automated liquid penetrant inspection line simulation model for increasing productivity. International Journal of Simulation Modelling, 12(2), 82–93. https://doi.org/10.2507/IJSIMM12(2)2.225

Rahmatullah, M., Zada, K., Artikel, I., & Test, N. D. (2023). ANALISIS PENGUJIAN METODE LIQUID PENETRANT TESTING BERDASARKAN ACCEPTANCE CRITERIA PENETRANT TESTING PADA KOMPONEN CESSNA 152. 02(01), 24–33.

Saffiudeen, M. F., Mohammed, F. T., & Syed, A. (2022). Comparative study of tube to tubesheet welding qualification on heat exchanger. Journal of Engineering and Applied Science, 69(1), 1–14. https://doi.org/10.1186/s44147-022-00099-z

Seleman, M. M. E., Ahmed, M. M. Z., Abd, E., Mahmoud, E., & Elzayady, N. (2023). Effect of Multi-Pass Shielded Metal Arc Welding on Microstructure Characterization and Mechanical Properties of 2507 Super Duplex Stainless Steel. Journal of the Egyptian Society of Tribology, 20(3), 95–108. https://doi.org/10.21608/jest.2023.308339

Sumardani, N. I., Setiawan, N. I., Nuryadin, B. W., & Sumardani, D. (2020). Defect Analysis of Carbonsteel Pipe Welding Connections Using Non-Destructive Testing with the Penetrant Test Method. Risenologi, 5(1), 38–47. https://doi.org/10.47028/j.risenologi.2020.51.72

Touileb, K., Ouis, A., Hedhibi, A. C., Ibrahim, A., & Abdo, H. S. (2022). Effects of Metal and Fluoride Powders Deposition on Hot-Cracking Susceptibility of 316L Stainless Steel in TIG Welding. Metals, 12(7). https://doi.org/10.3390/met12071225

Tugrul, A. B. (1997). Capillarity effect analysis for alternative liquid penetrant chemicals. NDT and E International, 30(1), 19–23. https://doi.org/10.1016/s0963-8695(96)00044-8

Yunianto, B., Wicaksana, P., Sudharto, J., UNDIP Tembalang, K., & Tengah, J. (2023). Analisis Cacat Hasil Pengelasan Pada Pipa ASTM A106 Grade B Menggunakan Magnetic Particle Test dan Liquid Penetrant Test di Workshop Las dan Inspeksi PPSDM Migas Cepu. Rotasi, 25(2).

Zaenal Abidin, Z. A., Wisnu Wibowo, S. A., Mulyono, T., Adesta, E. Y. T., & Sutjipto, A. G. E. (2023). Effect of Temperature on Penetration of Test Liquid into Boiler Pipe. International Journal of Engineering Materials and Manufacture, 8(4), 88–94. https://doi.org/10.26776/ijemm.08.04.2023.01

Downloads

Published

2025-02-20

Issue

Section

Articles