Pemodelan Dekomposisi Ammonium Carbamate pada Tekanan Tinggi di Pabrik Urea
Keywords:
urea synthesis, ammonium carbamate decomposition, falling film, mathematical modellingAbstract
Urea acts as a nitrogen-based fertilizer to boost crop production and prevent a worldwide hunger crisis. Considering ways to make urea production in existing plants more environmentally friendly, a detailed study has been conducted on the high-pressure stripper, in which the equipment uses intensive energy to decompose ammonium carbamate. The mathematical model was prepared using the two-film theory. The UNIQUAC and Redlich-Kwong equations of state have been used to express nonideality in the NH3-CO2-H2O-urea system under high pressure and temperature circumstances. Due to the lack of transport properties in extreme conditions, the properties were estimated using a theoretical method. The present study obtained the mass-transfer coefficient in dimensionless form and . Moreover, the heat-transfer coefficient was calculated using the Chilton-Colburn analogy. The proposed model result matches what is expected with the commercial plant data. Furthermore, with less than 5% relative deviations, the model deserves significant consideration for any practical use in high-pressure stripper simulationReferences
Aoki, H., Fujiwara, T., Morozumi, Y., Miura, T., 1999. Proceedings of the Fifth International Conference on Technologies and Combustion for Clean Environment.
Astarita, G., Savage, D.W., 1980. Theory of chemical desorption. Chemical Engineering Science 35, 649–656. https://doi.org/10.1016/0009-2509(80)80015-7
Battisti, R., Machado, R.A.F., Marangoni, C., 2020. A background review on falling film distillation in wetted-wall columns: From fundamentals towards intensified technologies. Chemical Engineering and Processing - Process Intensification 150, 107873. https://doi.org/10.1016/j.cep.2020.107873
Cesari, D.K., Schbib, S., Borio, D.O., 2005. Steady State Analysis of a Falling Film Reactor. Second Mercosur Congress on Chemical Engineering.
Chilton, T.H., Colburn, A.P., 1934. Mass Transfer (Absorption) Coefficients Prediction from Data on Heat Transfer and Fluid Friction. Ind. Eng. Chem. 26, 1183–1187. https://doi.org/10.1021/ie50299a012
Dean, D.E., Stiel, L.I., 1965. The viscosity of nonpolar gas mixtures at moderate and high pressures. AIChE J. 11, 526–532. https://doi.org/10.1002/aic.690110330
Erisman, J.W., Sutton, M.A., Galloway, J., Klimont, Z., Winiwarter, W., 2008. How a century of ammonia synthesis changed the world. Nature Geosci 1, 636–639. https://doi.org/10.1038/ngeo325
Fairbanks, D.F., Wilke, C.R., 1950. Diffusion Coefficients in Multicomponent Gas Mixtures. Ind. Eng. Chem. 42, 471–475. https://doi.org/10.1021/ie50483a022
Frank, M.J.W., Kuipers, J.A.M., van Swaaij, W.P.M., 1996. Diffusion Coefficients and Viscosities of CO 2 + H 2 O, CO 2 + CH 3 OH, NH 3 + H 2 O, and NH 3 + CH 3 OH Liquid Mixtures. J. Chem. Eng. Data 41, 297–302. https://doi.org/10.1021/je950157k
Hamidipour, M., Mostoufi, N., Sotudeh-Gharebagh, R., 2005. Modeling the synthesis section of an industrial urea plant. Chemical Engineering Journal 106, 249–260. https://doi.org/10.1016/j.cej.2004.12.020
Heffer, P., Praud’homme, M., 2016. Global Nitrogen Fertiliser Demand and Supply : Trend, Current Level and Outlook. Proceedings of the 2016 International Nitrogen Initiative Conference, “Solutions to improve nitrogen use efficiency for the world” 4–8.
Isla, M.A., Irazoqui, H.A., Genoud, C.M., 1993. Simulation of a urea synthesis reactor. 1. Thermodynamic framework. Ind. Eng. Chem. Res. 32, 2662–2670. https://doi.org/10.1021/ie00023a033
Lemkowitz, S.M., De Cooker, M.G.R.T., Van Den Berg, P.J., 1973. An empirical thermodynamic model for the ammonia-water-carbon dioxide system at urea synthesis conditions. J. Appl. Chem. 23, 63–76. https://doi.org/10.1002/jctb.5020230107
Levenspiel, O., 1999. Chemical reaction engineering, 3rd ed. ed. Wiley, New York.
Lillia, S., Bonalumi, D., Fosbøl, P.L., Thomsen, K., Valenti, G., 2018. Experimental study of the aqueous CO2-NH3 rate of reaction for temperatures from 15 °C to 35 °C, NH3 concentrations from 5% to 15% and CO2 loadings from 0.2 to 0.6. International Journal of Greenhouse Gas Control 70, 117–127. https://doi.org/10.1016/j.ijggc.2018.01.009
Mavrovic, I., Shirley, A.R., Coleman, G.R. “Buck,” 2000. Urea, in: John Wiley & Sons, Inc. (Ed.), Kirk-Othmer Encyclopedia of Chemical Technology. John Wiley & Sons, Inc., Hoboken, NJ, USA, p. 2118050113012218.a01. https://doi.org/10.1002/0471238961.2118050113012218.a01
Maxwell, G.R., 2004. Synthetic nitrogen products: a practical guide to the products and processes. Kluwer Academic/Plenum Publishers, New York.
Meessen, J.H., 2010. Urea, in: Wiley-VCH Verlag GmbH & Co. KGaA (Ed.), Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, p. a27_333.pub2. https://doi.org/10.1002/14356007.a27_333.pub2
Park, H.M., 2014. A multiscale modeling of carbon dioxide absorber and stripper using the Karhunen–Loève Galerkin method. International Journal of Heat and Mass Transfer 75, 545–564. https://doi.org/10.1016/j.ijheatmasstransfer.2014.03.089
Piotrowski, J., Kozak, R., Kujawska, M., 1998. Thermodynamic model of chemical and phase equilibrium in the urea synthesis process. Chemical Engineering Science 53, 183–186. https://doi.org/10.1016/S0009-2509(97)00271-6
Rahimpour, M.R., Barmaki, M.M., Mottaghi, H.R., 2010. A comparative study for simultaneous removal of urea, ammonia and carbon dioxide from industrial wastewater using a thermal hydrolyser. Chemical Engineering Journal 164, 155–167. https://doi.org/10.1016/j.cej.2010.08.046
Rejl, F.J., Haidl, J., Valenz, L., Moucha, T., Schultes, M., 2016. Analogy of absorption and distillation processes. Wetted-wall column study. Chemical Engineering Science 153, 146–154. https://doi.org/10.1016/j.ces.2016.07.021
Soave, G., 1993. 20 years of Redlich-Kwong equation of state. Fluid Phase Equilibria 82, 345–359. https://doi.org/10.1016/0378-3812(93)87158-W
Stiel, L.I., Thodos, G., 1964. The thermal conductivity of nonpolar substances in the dense gaseous and liquid regions. AIChE J. 10, 26–30. https://doi.org/10.1002/aic.690100114
Voskov, A.L., Voronin, G.F., 2016. Thermodynamic Model of the Urea Synthesis Process. J. Chem. Eng. Data 61, 4110–4122. https://doi.org/10.1021/acs.jced.6b00557
Wilke, C.R., 1950. A Viscosity Equation for Gas Mixtures. The Journal of Chemical Physics 18, 517–519. https://doi.org/10.1063/1.1747673
Yaws, C.L., 1999. Chemical properties handbook: physical, thermodynamic, environmental, transport, safety, and health related properties for organic and inorganic chemicals, McGraw-Hill handbooks. McGraw-Hill, New York.
Yubing, R., 2010. High Pressure Stripper Efficiency Problems. UreaKnowHow 1–9.
Zendehboudi, S., Zahedi, G., Bahadori, A., Lohi, A., Elkamel, A., Chatzis, I., 2014. A dual approach for modelling and optimisation of industrial urea reactor: Smart technique and grey box model. Can. J. Chem. Eng. 92, 469–485. https://doi.org/10.1002/cjce.21824
Zhang, X., Davidson, E.A., Mauzerall, D.L., Searchinger, T.D., Dumas, P., Shen, Y., 2015. Managing nitrogen for sustainable development. Nature 528, 51–59. https://doi.org/10.1038/nature15743
Zhang, X., Zhang, S., Yao, P., Yuan, Y., 2005. Modeling and simulation of high-pressure urea synthesis loop. Computers & Chemical Engineering 29, 983–992. https://doi.org/10.1016/j.compchemeng.2004.10.004
Downloads
Published
Issue
Section
License
Syarat yang harus dipenuhi oleh Penulis sebagai berikut:- Penulis menyimpan hak cipta dan memberikan jurnal hak penerbitan pertama naskah secara simultan dengan lisensi di bawah Creative Commons Attribution License yang mengizinkan orang lain untuk berbagi pekerjaan dengan sebuah pernyataan kepenulisan pekerjaan dan penerbitan awal di jurnal ini.
- Penulis bisa memasukkan ke dalam penyusunan kontraktual tambahan terpisah untuk distribusi non ekslusif versi kaya terbitan jurnal (contoh: mempostingnya ke repositori institusional atau menerbitkannya dalam sebuah buku), dengan pengakuan penerbitan awalnya di jurnal ini.
- Penulis diizinkan dan didorong untuk mem-posting karya mereka online (contoh: di repositori institusional atau di website mereka) sebelum dan selama proses penyerahan, karena dapat mengarahkan ke pertukaran produktif, seperti halnya sitiran yang lebih awal dan lebih hebat dari karya yang diterbitkan. (Lihat Efek Akses Terbuka).