Catalytic Pyrolysis of Corn Cob Using Fe-Ni/Char Catalyst

Mutia Safitri, Muhammad Mufti Azis, Joko Wintoko, Jonas Kristanto, Novi Caroko

Abstract


There is a growing interest to convert biomass waste such as corn cob to biofuel. Thermal conversion such as pyrolisis may play an important role to produce bio-oil. The objective of this research was to develop a kinetic study of catalytic pyrolysis of corn cob over Fe-Ni/Char catalyst using Thermogravimetric Analysis (TGA). The solid catalyst was prepared by impregnation method. The ratio of the percentages of Fe and Ni metals in the X-Ray Fluorescence (XRF) analysis of the catalyst was close to 1:1, resulting in metal loading values of 2.5% (1.062% and 1.013%), 5% (2.291% and 2.794%), and 10% (4.947% and 5.417%) for the catalyst. The pyrolysis experiments were performed using various catalyst loadings of 0, 2.5, 5, and 10%. In addition, the present study also investigated the influence of heating rates of 5, 10, and 20 K min-1. Two isoconversion models, Kissinger-Akahira-Sunose (KAS) and Ozawa-Flynn-Wall (OFW) were utilized to determine the activation energies. The activation energies calculated using the KAS and OFW models revealed a consistent trend, with values of activation energy of corn cob pyrolysis around 124 - 303 kJ/mol and 133 - 313 kJ/mol, respectively.


Keywords


catalytic pyrolisis; TGAl Fe-Ni/Char catalyst; bio-oil

Full Text:

PDF

References


Arenas Castiblanco, E., Montoya, J. H., Rincón, G. V., Zapata-Benabithe, Z., Gómez-Vásquez, R., & Camargo-Trillos, D. A. (2022). A new approach to obtain kinetic parameters of corn cob pyrolysis catalyzed with CaO and CaCO3. Heliyon, 8(8). https://doi.org/10.1016/j.heliyon.2022.e10195

Barontini, F., Biagini, E., Bonini, F., & Tognotti, L. (2015). An experimental investigation on the devolatilization behaviour of raw and torrefied lignocellulosic biofuels. Chemical Engineering Transactions, 43, 481–486. https://doi.org/10.3303/CET1543081

Bridgwater, A. V. (2012). Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy, 38, 68–94. https://doi.org/10.1016/j.biombioe.2011.01.048

Escalante, J., Chen, W. H., Tabatabaei, M., Hoang, A. T., Kwon, E. E., Andrew Lin, K. Y., & Saravanakumar, A. (2022). Pyrolysis of lignocellulosic, algal, plastic, and other biomass wastes for biofuel production and circular bioeconomy: A review of thermogravimetric analysis (TGA) approach. Renewable and Sustainable Energy Reviews, 169(May), 112914. https://doi.org/10.1016/j.rser.2022.112914

Gai, C., Dong, Y., & Zhang, T. (2013). The kinetic analysis of the pyrolysis of agricultural residue under non-isothermal conditions. Bioresource Technology, 127, 298–305. https://doi.org/10.1016/j.biortech.2012.09.089

Giudicianni, P., Cardone, G., & Ragucci, R. (2013). Cellulose, hemicellulose and lignin slow steam pyrolysis: Thermal decomposition of biomass components mixtures. Journal of Analytical and Applied Pyrolysis, 100, 213–222. https://doi.org/10.1016/j.jaap.2012.12.026

Hu, M., Cui, B., Xiao, B., Luo, S., & Guo, D. (2020). Insight into the ex situ catalytic pyrolysis of biomass over char supported metals catalyst: Syngas production and tar decomposition. Nanomaterials, 10(7), 1–14. https://doi.org/10.3390/nano10071397

Kaur, R., Gera, P., Jha, M. K., & Bhaskar, T. (2018). Pyrolysis kinetics and thermodynamic parameters of castor (Ricinus communis) residue using thermogravimetric analysis. Bioresource Technology, 250, 422–428. https://doi.org/10.1016/j.biortech.2017.11.077

Kim, Y.-M., Rhee, G. H., Ko, C. H., Kim, K. H., Jung, K. Y., Kim, J. M., & Park, Y.-K. (2018). Catalytic Pyrolysis of Pinus densiflora Over Mesoporous Al 2 O 3 Catalysts . Journal of Nanoscience and Nanotechnology, 18(9), 6300–6303. https://doi.org/10.1166/jnn.2018.15653

Liang, S., Guo, F., Du, S., Tian, B., Dong, Y., Jia, X., & Qian, L. (2020). Synthesis of Sargassum char-supported Ni-Fe nanoparticles and its application in tar cracking during biomass pyrolysis. Fuel, 275(January), 117923. https://doi.org/10.1016/j.fuel.2020.117923

Lim, J. S., Abdul Manan, Z., Wan Alwi, S. R., & Hashim, H. (2012). A review on utilisation of biomass from rice industry as a source of renewable energy. Renewable and Sustainable Energy Reviews, 16(5), 3084–3094. https://doi.org/10.1016/j.rser.2012.02.051

Liu, X., Xia, W., Jiang, Q., Xu, Y., & Yu, P. (2014). Synthesis, characterization, and antimicrobial activity of kojic acid grafted chitosan oligosaccharide. Journal of Agricultural and Food Chemistry, 62(1), 297–303. https://doi.org/10.1021/jf404026f

Minh Loy, A. C., Yusup, S., Fui Chin, B. L., Wai Gan, D. K., Shahbaz, M., Acda, M. N., Unrean, P., & Rianawati, E. (2018). Comparative study of in-situ catalytic pyrolysis of rice husk for syngas production: Kinetics modelling and product gas analysis. Journal of Cleaner Production, 197, 1231–1243. https://doi.org/10.1016/j.jclepro.2018.06.245

Mishra, R. K., & Mohanty, K. (2018). Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis. Bioresource Technology, 251, 63–74. https://doi.org/10.1016/j.biortech.2017.12.029

Sarkar, J. K., & Wang, Q. (2020). Characterization of pyrolysis products and kinetic analysis of waste jute stick biomass. Processes, 8(7). https://doi.org/10.3390/pr8070837

Shariff, A., Aziz, N. S. M., Ismail, N. I., & Abdullah, N. (2016). Corn cob as a potential feedstock for slow pyrolysis of biomass. Journal of Physical Science, 27(2), 123–137. https://doi.org/10.21315/jps2016.27.2.9

Tripathi, M., Sahu, J. N., & Ganesan, P. (2016). Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renewable and Sustainable Energy Reviews, 55, 467–481. https://doi.org/10.1016/j.rser.2015.10.122

Wang, Y. J., Kang, K., Yao, Z. L., Sun, G. T., Qiu, L., Zhao, L. X., & Wang, G. (2018). Effects of different heating patterns on the decomposition behavior of white pine wood during slow pyrolysis. International Journal of Agricultural and Biological Engineering, 11(5), 218–223. https://doi.org/10.25165/j.ijabe.20181105.3156

Xing, R., Guo, J., Miao, C., Liu, S., & Pan, H. (2014). Fabrication of protein-coated CdS nanocrystals via microwave-assisted hydrothermal method. Journal of Experimental Nanoscience, 9(6), 582–587. https://doi.org/10.1080/17458080.2012.678891

Xu, L., Zhang, J., Ding, J., Liu, T., Shi, G., Li, X., Dang, W., Cheng, Y., & Guo, R. (2020). Pore structure and fractal characteristics of different shale lithofacies in the dalong formation in the western area of the lower yangtze platform. Minerals, 10(1). https://doi.org/10.3390/min10010072

Yang, H., Yan, R., Chen, H., Lee, D. H., & Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86(12–13), 1781–1788. https://doi.org/10.1016/j.fuel.2006.12.013


Refbacks

  • There are currently no refbacks.
slot gacor slot gacor hari ini slot gacor 2025 demo slot pg slot gacor slot gacor