Deformation Signals at Mud Volcano in Kambing Island Detected by L-band InSAR

Naufal Setiawan, Masato Furuya

Abstract


Abstract – Mud volcanoes are generated by fluid and solid material extrusion from their mud reservoir and are predominantly found at convergent plate margins. Kambing Island is a small island in Eastern Timor, Indonesia, where the Australian continental plate collides with the Banda Sea plate. The previous geological study identified active mud volcano on this island, but it is still unclear whether and to what extent they are active. In this work, we attempt to detect surface deformation due to the mud volcanoes activism in Kambing island using the Advanced Land Observing Satellite/ Phased Array Type L-band Synthetic Aperture Radar (ALOS/PALSAR) Interferometry Synthetic Aperture Radar (InSAR). The ALOS/PALSAR datasets consist of 12 ascending and 5 descending Synthetic Aperture Radar (SAR) data from 2006 to 2011. Although the results indicate surface deformation signals are hardly detected in the interferogram pairs due to lost coherence and atmospheric noise, we could highlight the episodic occurrence of surface deformation signals between April and November 2008 reaches 6.4 cm moving away from the satellite line of sight. In the future, to back up our findings, further field surveys or long-term InSAR are needed.

 

Keywords: mud volcano, InSAR, deformation.


Keywords


mud volcano, InSAR, deformation

Full Text:

PDF

References


Antonielli, B., Monserrat, O., Bonini, M., Righini, G., Sani, F., Luzi, G., Feyzullayev, A. A., & Aliyev, C. S. (2014). Pre-eruptive ground deformation of Azerbaijan mud volcanoes detected through satellite radar interferometry (DInSAR). Tectonophysics, 637, 163–177. https://doi.org/10.1016/j.tecto.2014.10.005

Barber, A. J., Tjokrosapoetro, S., & Charlton, T. R. (1986). Mud Volcanoes, Shale Diapirs, Wrench Faults, and Melanges in Accretionary Complexes, Eastern Indonesia^ The importance of shale diapirism in the formation of. In The American Association of Petroleum Geologists Bulletin V (Vol. 70, Issue 11).

Brcic, R., Parizzi, A., Eineder, M., Bamler, R., & Meyer, F. (2010). Estimation and compensation of ionospheric delay for SAR interferometry. International Geoscience and Remote Sensing Symposium (IGARSS), 3, 2908–2911. https://doi.org/10.1109/IGARSS.2010.5652231

Costantini, M. (1998). A Novel Phase Unwrapping Method Based on Network Programming. In IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING (Vol. 36, Issue 3).

Dimitrov, L. I. (n.d.). Mud volcanoes-the most important pathway for degassing deeply buried sediments. www.elsevier.com/locate/earscirev

Fukushima, Y., Mori, J., Hashimoto, M., & Kano, Y. (2009). Subsidence associated with the LUSI mud eruption, East Java, investigated by SAR interferometry. Marine and Petroleum Geology, 26(9), 1740–1750. https://doi.org/10.1016/j.marpetgeo.2009.02.001

Funning, G. J., & Garcia, A. (2019). A systematic study of earthquake detectability using Sentinel-1 InterferometricWide-Swath data. Geophysical Journal International, 216(1), 332–349. https://doi.org/10.1093/gji/ggy426

Goldstein, R. M., & Werner, C. L. (1998). Radar interferogram filtering for geophysical applications. Geophysical Research Letters, 25(21), 4035–4038. https://doi.org/10.1029/1998GL900033

Hanssen, R. (1998). Atmospheric heterogeneities in ERS tandem SAR interferometry (Issue 98). http://doris.tudelft.nl/Literature/hanssen98i.html

Hanssen, R. F. (2002). Radar Interferometry, Data Interpretation and Error Analysis.

Hussain, E., Wright, T. J., Walters, R. J., Bekaert, D., Hooper, A., & Houseman, G. A. (2016). Geodetic observations of postseismic creep in the decade after the 1999 Izmit earthquake, Turkey: Implications for a shallow slip deficit. Journal of Geophysical Research: Solid Earth, 121(4), 2980–3001. https://doi.org/10.1002/2015JB012737

Iio, K., & Furuya, M. (2018). Surface deformation and source modeling of Ayaz-Akhtarma mud volcano, Azerbaijan, as detected by ALOS/ALOS-2 InSAR. Progress in Earth and Planetary Science, 5(1). https://doi.org/10.1186/s40645-018-0220-7

Jung, H. S., Lee, D. T., Lu, Z., & Won, J. S. (2013). Ionospheric correction of SAR interferograms by multiple-aperture interferometry. IEEE Transactions on Geoscience and Remote Sensing, 51(5), 3191–3199. https://doi.org/10.1109/TGRS.2012.2218660

Kopf, A. J. (2002). Significance of mud volcanism. Reviews of Geophysics, 40(2), 2-1-2–52. https://doi.org/10.1029/2000RG000093

Liang, C., Agram, P., Simons, M., & Fielding, E. J. (2019). Ionospheric correction of InSAR time series analysis of C-band sentinel-1 TOPS data. IEEE Transactions on Geoscience and Remote Sensing, 57(9), 6755–6773. https://doi.org/10.1109/TGRS.2019.2908494

Masato Furuya. (2011). Sar Interferometry. 1–24. https://doi.org/10.1007/978-90-481-8702-7

Meyer, F., Bamler, R., Jakowski, N., & Fritz, T. (2006). The potential of low-frequency SAR systems for mapping ionospheric TEC distributions. IEEE Geoscience and Remote Sensing Letters, 3(4), 560–564. https://doi.org/10.1109/LGRS.2006.882148

Milkov, A. V. (n.d.). Worldwide distribution of submarine mud volcanoes and associated gas hydrates. www.elsevier.nl/locate/margeo

Moreira, A., Prats-iraola, P., Younis, M., Krieger, G., Hajnsek, I., & Papathanassiou, K. P. (2013). A Tutorial on Synthetic Aperture Radar. march.

Wessel, P., W. H. F. Smith, R. Scharroo, J. Luis, and F. Wobbe, Generic Mapping Tools: Improved Version Released, EOS Trans. AGU, 94(45), p. 409–410, 2013. doi:10.1002/2013EO450001.




DOI: https://doi.org/10.31315/jmtg.v13i3.9400

DOI (PDF): https://doi.org/10.31315/jmtg.v13i3.9400.g5214

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 JURNAL ILMIAH MTG

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.