The Effects of Compaction Towards Diversion Channel Base Material

Faizal Agung Riyadi


The sustainability and safety of surface mine operations often depend on various factors, including the hydrology of the area and a suitable plan to address its challenges. Some of the concerns related to hydrological issues include the drainage system and its design preparation. In special cases where river diversion is required, there may be specific issues with the planning and construction process. In such instances, a diversion channel is planned to be built between two closely situated pits. This channel will be constructed upon an embankment consisting of disposal materials. The plan has implications for the spatial positioning and the choice of materials for the channel base. The embankment requires proper treatment and processes during its construction, such as compaction and consolidation. This study addresses the effectiveness of compaction efforts on the material's capacity concerning its physical, mechanical, and hydrogeological properties. The analysis was conducted using correlations between laboratory test results and extracted hydrogeological data using software instrumentation. These correlations specifically examine the changes in compaction values in relation to changes in material properties. The study concludes that compaction efforts have a significant impact on the material's ability to support the diversion channel, making it an effective means of enhancing the material's capabilities

Full Text:



Austlii. (2019). Water Act. Dipetik September 26, 2018, dari Austlii:

Bolarinwa, A., Adeyeri, J. B., & Okeke, T. C. (2017). Compaction and Consolidation Characteristics of Lateritic Soil of a Selected Site in Ikole Ekiti, Southwest Nigeria. Nigerian Journal of Technology (NIJOTECH), Vol. 36, No. 2, p. 339 –345.

Cahyadi, T. A. (2018). Pengembangan model Optimasi Desain Lubang Penyaliran Horizontal Tambang. Studi Kasus Tambang terbuka Grassberg PT. Freeport Indonesia. Disertasi, Institut Teknologi Bandung, Program Studi Doktor Rekayasa Pertambangan, Bandung.

Cahyadi, T. A., Widodo, L. E., Syihab, Z., Notosiswoyo, S., & Widijanto, E. (2017). Hydraulic Conductivity Modeling of Fractured Rock at Grasberg Surface Mine, Papua-Indonesia. J. Eng. Technol. Sci., Vol. 49, No. 1, p. 37 - 56.

Craig, R. F. (2004). Craig’s Soil Mechanics (Seventh Edition ed.). Spon Press.

DNRM. (2015). Department of Natural Resources and Mines. Dipetik September 28, 2018, dari DNRM: __data/ assets/ pdf_file/ 0015/ 212424/ guideline-watercourse-diversions.pdf

Erskine, W. (1992). Channel Response to Large-scale Ricer Training Works: Hunter River, Australia. Regulation Rivers Resource Mining, 7, p. 261–278.

Flatley, A., Rutherford, I. D., & Hardie, R. (2018). River Channel Relocation: Problems and Prospects. Water, 10, p. 1360.

Fredlund, D., & Xing, A. (1994). Equations for The Soil-Water Characteristic Curve. Can. Geotecli. J., 31, p. 521-532.

Greensmith, J. T., & Tucker, E. V. (1986). Compaction and Consolidation. Dalam O. v. Plassche, Sea-Level Research (O. Plassche ed., hal. 591 - 592).

Hsu, S.-M., Lo, H.-C., Chi, S.-Y., & Ku, C.-Y. (2011). Rock Mass Hydraulic Conductivity Estimated by Two Empirical Model. Dalam O. Dikinya (Penyunt.), Developments in Hydraulic Conductivity Research (hal. 133 -158). InTech.

Iskandar, I., & Koike, A. (2011). Distinguishing Potential Sources of Arsenic Released to Groundwater Around a Fault zone Containing a Minesite. Environtmental Earth Science, 63, p. 595 - 608.

Leong, E. C., & Rahardjo, H. (1997). Permeability Function For Unsaturated Soil. J. Geotech. Geoenviron. Eng., 123(12), p. 1118-1126.

McEwan, A. (1999). The Failure of and Remedials to a River Diversion for an Opencast Mine in The Witbank Coalfields of South Africa. Mine Water and Environment (hal. 79–85). Sevilla, Spain: IMWA Congress.

Mulyanti, W. R., Yuliadi, & Maryanto. (2017). Analisa Teknis dan Ekonomis Strategi Short Distance Disposal West Block (Anoa South) Studi Kasus oleh Section Short Term Planning, Departemen Mines And Exploration Di PT Vale Indonesia, Tbk. Kecamatan Nuha, Kabupaten Luwu Timur. Prosiding Teknik Pertambangan. Vol. 1, No. 1, hal. 1-8. Bandung: UNISBA.

Riyadi, F. A. (2013). Geologi Dan Kajian Kestabilan Lereng Dengan Kontrol Muka Air Tanah Pada Lereng High Wall Pit Batulaki Utara, Kecamatan Satui, Kabupaten Tanah Bumbu, Provinsi Kalimantan Selatan. Studi Kasus Upaya Stabilisasi Lereng Dengan Pelandaian Lereng Dan Dewatering. Skripsi, Universitas Pembangunan Nasional "Veteran" Yogyakarta, Program Studi Teknik Geologi, Yogyakarta.

Riyadi, F. A., Cahyadi, T. A., Nurkhamim, & Supandi. (2019). Desain Saluran Terbuka Berbasis Microsoft Excel. Perhitungan dan Pemodelan yang Praktis dan Efisien. KURVATEK, h. 61-78.

Riyadi, F. A., Cahyadi, T. A., Nurkhamim, & Supandi. (2019). Model Fungsi Konduktifitas Hidrolik Terhadap Resistivitas Timbunan Disposal dan Material Insitu. PIT PAI. Bandung: PAAI.

Riyadi, F.A. (2019). Studi Hidrogeologi Untuk Penanggulangan Aliran Air Di Dalam Material Penyusun Alas Saluran. Tesis Magister Teknik Pertambangan, Universitas Pembangunan Nasional “Veteran” Yogyakarta.

Rocscience. (2010). Slide 6.0 Tutorials Manual. Dalam Rocscience, Slide 6.0 Tutorials Manual. Rocsscience.

Shao, X., & Wang, H. (2003). Interbasin transfer projects and their implications : A China case study. Intl. J. River Basin Management, 1, No. 1, p. 5–14.

Soar, P., & Thorne, C. (2011). Channel Restoration Design for Meandering Rivers. Vicksburg, MS, USA: U.S Army Corps of Engineers:

Supandi. (2013). Pemodelan Parameter Geoteknik dalam Merespon Perubahan Desain Tambang Batubara Dengan Sistem Tambang Terbuka. ReTTI, (hal. h. T1-T5). Yogyakarta.

Supandi, S., Riyadi, F. A., & Purnomo, S. (2016). Study Geolistrik Untuk Mengidentifikasi Kedudukan Lumpur dan Air Dalam Rangka Optimalisasi Timbunan Lowwall. ReTTI, p. 352-356.

Supandi, S., Zakaria, Z., Sukiyah, E., & Sudrajat, A. (2019). The Influence of Kaolinite- Illite Toward Mechanical Properties of Claystone. Open Geosci., 11, p. 440-446.

Supandi, Zakaria, Z., Sukiyah, E., & Sudradjat, A. (2018, December). The Correlation of Exposure Time And Claystone Properties At The Warukin Formation Indonesia. International Journal of GEOMATE, 15(52), p. 160-167.

Yevjevich, V. (2001). Water diversions and Interbasin Transfers. Water International, 26, p. 342–348.




  • There are currently no refbacks.