

Opsi

Vol. 17, No. 1, June 2024

Improving implementation of occupational health and safety of construction company by Job Safety Analysis (JSA) method (study case at PT Arto Moro Sentosa)

Arif Budi Sulistyo^{1*}, Nugroho Pratama Putra¹, Hartadi Wijaya¹, Nur Hidayanti¹

¹Universitas Banten Jaya, Jalan Ciwaru Raya No. 73, Cipare, Kota Serang, Banten 42117 Indonesia

Article history:	ABSTRACT
Received: 17 October 2023	The construction sector is a sector that employs many
Revised: 17 January 2024	people who have high risk of work accidents, because a lot
Accepted: 17 March 2024	of work in this sector is possibility carried out by unsafe
Published: 30 June 2024	actions or unsafe conditions. PT. Arto Moro Sentosa is
	company which operates in general trading, general construction, suppliers, outsourcing, etc., is aware that the business has a high risk of work accidents. The lack of
Kennords.	employee awareness will have an impact on the
Ergonomic	magnitude of the risks that must be borne by the worker
Iob Safety Analysis	and the company. The purpose of this research is
Occupational Health and Safety	determining work accident records for the Occupational
Risk Matrix	Health and Safety (OHS) system, employee risks, and
	existing improvements at company. By knowing the
	classification of hazards based on the type of accident, this
	research uses the Job Safety Analysis (JSA) method,
	histograms, Pareto diagrams, and cause-and-effect (fish
	bone) diagrams. Based on the author's observations,
	company data related to OHS (Occupational Health and
	Safety) and interviews with the directors, could be
	obtained a history of work accidents based on the type of
	accident. Here are ergonomic work accidents (57.89%),
	physical factor accidents (31.58%), chemical factor
	accidents (5.26%), biological factor accidents (5.26%), and
	psychological factor accidents (0%). Several
	recommendations are performed to avoid repeated
	workers paying more attention to OUS supervision
	giving conctions to workers who violate OHS
	giving sanctions to workers who violate Oris.

*Corresponding Author: arif.b.sulistyo@gmail.com; Tel.: +628129191194

https://doi.org/10.3131	5/opsi.v17i1.11005

This is an open access article under the CC–BY license.

1. INTRODUCTION

DOI:

The construction sector is a sector that employs many people who have a high risk of work accidents, this is because a lot of work in this sector is carried out with unsafe actions or in unsafe conditions [1]. There is norm that regulation about health and safety is implemented to protect

workforce, accident risk and disease causing by working environment [2], because accident could disturb project activities, time and material loss, illness even fatal accident [3], effective management of safety and health conditions can also reduce costs, such as medical care, sick leave, and disability benefits [4]. According to Manpower Minister of the Republic of Indonesia [5], working accident is unintentionally or unexpected incident which occurred resulted damage or victims, that may comes from human factor and unsafe environment [6]. The government of Indonesia has implemented OHS policies such as OHS culture promotion program, OHS management system strengthening program, and implementation target program [7]. The implementation of OHS in Indonesia is controlled by the government regulation no. 50/2012 [8]. Natural and human-caused fatalities are more pronounced in the construction industry than in order economic sectors worldwide due to a dearth of sustainably implemented occupational health and safety [9].

PT. Arto Moro Sentosa, which operates in the fields of general trading, general construction, suppliers, outsourcing, etc. The construction duration is essential and strong management is necessary to complete the project on time [10], including avoid the accident happened. Awareness of the risk of work accidents among employees is based on the fact that the business they run is a business that has a high risk of work accidents, so with the awareness raised, company has established a standard OHS system [11]. Establishment of a standard and standardized OHS (Occupational Health and Safety) or Safety and Health at working place system at company apparently does not guarantee that implementation will take place as expected. However, good OHS management will lead working place safely and eliminate the accident [12]. A key area where knowledge management may be effectively employed is the field of occupational health and safety management (OHS), many author have found notable differences between large and small organizations in this area [13]. According to a survey conducted in 2021 shows 19 work accidents, ranging from minor accidents such as being hit by a work object to almost fatal work accidents such as falling from a height elevation. Therefore, the use of Personal Protective Equipment (PPE) is very important, because PPE is an equipment used to protect the workers from accidents on the construction [14]. PPE is a kind of protection provided in addition to elimination, substitution, technical engineering and administration methods [15], but also by providing PPE for workers [16]. This is done because the company is also aware of the high potential hazard that exists in the working environment. Previous study shows each 1 fatal accident involving 10 minor accident and 30 property damage and 600 near miss accident, so accident must be prevent since earliest stage, because any of minor or near miss accident could lead to fatality [17].

Based on previous research conducted by Atmaja et al. [18] who conducted research on the implementation of OHS in Padang City, Occupational Safety and Health is a complex problem in a construction project. Apart from that, eliminating *unsafe conditions* and *unsafe actions* is a preventive measure to reduce OHS risks, according to research results by Sulistyo and Maulana [19]. The construction sector is closely related to safety issues, according to Jaya [20]. Safety is a condition that is free from relatively small risks below a certain level. Meanwhile, risk is the level of possibility of a hazard occurring that causes an accident and the intensity of the hazard. Safety is an effort to carry out every work activity in a safe manner so that it does not result in accidents. To achieve safety in carrying out work activities, everyone must always protect themselves from disasters or potential threats by wearing safety equipment [21], meanwhile personal protective is the last guard when elimination, substitution, engineering and administration control have been performed [22]. This is different from the research conducted by Thepaksorn et al. [23] which discusses identified potential safety and health hazards associated with six main processes, including: 1) logging and cutting, 2) sawing, 3) planning and re-arranging, 4) vacuuming and wood preservation, 5) drying and planks re-arranging and 6) grading, packing, and storing.

The risk analysis and assessment has been a beneficial tool in the safety management of systems and the prevention of accidents [24]. In construction, Job Safety Analysis (JSA) is very important to determine the level of safety and to reduce the risk of work accidents in construction project implementation work. JSA is kind of method to identify hazard that exist in working environment, also controlling and mitigation to avoid the accident [25]. JSA in OHS is a safety management technique that focuses on identifying hazards related to the series of work or tasks carried out [26]. JSA focuses

Opsi 2024, Vol. 17, No. 1

on the relationship between workers, tasks/jobs, work environment and equipment. This is in accordance with the method of investigating the causes of accidents in the workplace which begins with conditions that can cause accidents in the workplace [27]. The aim of implementing JSA is to identify potential hazards in each work activity so that workers are expected to be able to recognize these hazards before accidents or work-related illnesses occur [28].

In addition to the JSA method, the Risk/Hazard Control Hierarchy is used in reducing the problem of work accidents in construction projects, the Risk and Hazard Control Hierarchy that has been identified and evaluated requires steps to reduce the risk or hazard to a tolerable level [29]. Risk shall be managed by organization effectively as part of company strategic to transform from weakness become value added or opportunity [30]. Controlling risk by elimination source of hazard is the most effective, reliable, and protects other controls, and the next hierarchical order, the level of effectiveness, reliability and security decreases [31]. Risk control is a procedure that starts from a high to a low level, which conditions become safer. The control hierarchy includes elimination, substitution, design, administration and personal protective equipment [32]. Other diagrams such as histograms and Pareto diagrams are needed to determine the percentage of problems based on the number of events. The sequence starts with the number of frequent problems, increasing to rare problems. On the chart, the highest (leftmost) bar is followed by the lowest (rightmost) bar [33].

According to Ghaisani and Nawawinetu [34] hazard are divided into 5 types, namely:

- 1. Chemicals (gas, vapors, liquids or dust that workers' bodies such as cleaning products, battery acid, or other chemicals) [35].
- 2. Biology (living organisms that can disease and harmful environmental biological conditions.
- 3. Physics (sources energy are strong to harm the body such as heat, light, vibration, noise, pressure).
- 4. Ergonomics (work methods, work positions of equipment, poorly designed equipment, or repetitive monotonous movements that reduce work concentration).
- 5. Psychology (personal relationships, roles and responsibilities, such as unclear work orders and worker role conflicts).

In order to reduce the number of work accidents at company, safety activities must be improved. Good OHS management can have a positive impact not only on accident rates, but also on competitiveness and financial performance [36]. This effort is intended to find and maintain the most effective form of improvement. This is the most effective solution to an existing problem that will persist and even escalate. The method used in making improvements is the 5W&1H method, 5W&1H are six basic types of questions used to collect information (information gathering) [37]. This method is widely used by journalists to obtain the desired detailed and detailed information [38].

The objectives to be achieved in this research are to know the work accident records at company, understand the system of occupational health and safety being implemented, knowing what risks may occur to employees who carrying out field duties and find out improvements and giving recommendation to company.

2. MATERIALS AND METHODS

The research method was carried out by directly visiting the location of the project work, namely at Merak port, Banten. The research consisted of three stages, namely:

a) Stage 1: Identification & Initial Study

The Identification & Initial Study stage is carried out by researchers including reading books, journals, previous research reports, seeking information from the media, discussing with other people, and observing conditions and phenomena in the field.

b) Stage 2: Data Collection and Processing

In compiling this research journal, the author compiled it based on data obtained during research on the Merak Port pier repair work. At initial direct observation is performed on the work being carried out during the research, especially aspects that have the potential for work accidents. Very varied and complex conditions are very likely to occur during implementation in the field, so the smooth implementation of the dock repair work is very dependent on good conditions among all workers. Then data collection through interviews to engineers, supervisors, foremen and craftsmen relating with practical solutions that will be used to overcome problems that arise. On top of that literature study also necessary, the comparisons study is performed through books and journals related to problem rising and analysis during implementation of dock repairs. Finally, the data processing carried out is from data on work accidents that occurred during the repair process. This data will be processed using the Job Safety Analysis method to determine the risks and hazard of the work carried out. c) Stage 3: Analysis and Conclusion

At the beginning, safety record of company is provided in check sheet by previous stage. Check sheet will be showed typical of accident, injured part of body and timing. It is useful to determine hazard hierarchy, then Job Safety Analysis (JSA) is performed and risk matrix class is considered, as shown in Table 1 [39]. Every single accident is scored in term of severity, likelihood and probability to get risk classification, either low, medium even high risk [40]. The matrix will help prioritize improvement based on urgency of risk [41]

There are five types of accidents, here are chemical, biological, physical, ergonomic and psychological accident. Each of accident is identified based on type and put in histogram diagram and followed by pareto diagram. Pareto rule said that priority problem shall be solved at least 80% contribution. To know the root causes of problem, interview and survey is conducted with engineers, supervisors, foremen and craftsmen through fishbone diagram and followed by 5W&1H, to capture various information about the incident, such as: who was involved in the incident, what exactly happened, where, when, why and how [42]. Since root causes is identified then some recommendation is proposed also, to improve safety performance and avoid similar accident occurred in near future.

				PROBABILITY	
			B1	B2	B3
		RISK MATRIX	VERY LIKELY	POSSIBLE	LITTLE POSSIBLE
	_		events that occur more than 3 times or are repeated	has happened but not more than 3 times	Can happen, but not more than once
	A1	pollute the work environment and areas around the workplace Death Permanent illness/disability	9	7	4
SEVERITY	A2	pollute the work environment injuries accompanied by medical treatment Serious injury	8	5	2
	A3	does not pollute the work environment First aid medical care Minor injuries	6	3	1

Table 1. Risk matrix [43]

3. RESULTS

3.1. Check Sheets

Check sheets can be used to analyze and analyze OHS data, such as OHS equipment, OHS activities and work accidents that occur. With this check sheet, company directors or work project leaders can find out problems based on the frequency of types or causes of work accidents and can make decisions to prevent work accidents from occurring in ongoing or future projects in order to create a healthy and safe work environment for workers.

The results of data collection via check sheet can be seen in Table 2.

Date	Causes of Work Accidents	Types of Work Accidents	Information	
Incident		51 5	Wounds/Injuries	Injured body organs
January	Hand cut by steel plate while	Ergonomics – Careless	The skin on the hands peels	hand
14, 2021	taking measurements	measurements	off	
February	Feet get pinched when	Ergonomics – The workpiece	Feet become bruised	foot
8, 2021	moving workpieces	falls on the feet		
April 15,	Head hit the dock fender	Ergonomics – Dock	The head becomes swollen	head
2021	while measuring	measurements pay little		
A '1 20		attention to surroundings	miiiii i	р 1 <i>л</i> .
April 30,	to excessive lifting of the	Ergonomics – incorrect lifting of	or muscle strained	body/nips
2021	plate	plates/illaterials	or muscle stramed	
May 3	Eves exposed to sparks	Physics – The welding heat	The right eve became	Eve
2021	during welding	source creates sparks that have	swollen	Цус
		the potential to injure		
May 17,	Eye pain due to exposure to	Physics – The light source from	The eyes go blind for a	Eye
2021	light during welding	the welding heat dazzles the	moment	-
	_ 0	eyes		
May 28,	The leg hit while lifting the	Ergonomics – The position of	Feet become bruised	Foot
2021	steel plate	lifting the workpiece creates an		
		obstructed view and tripping of		
		the feet		
une 4,	The hand was hit by sparks	Physics – Iron flakes bounce off	Injured hand	Hand
2021	while cutting	the grinding wheel		
uly 23	Slipping when trying to	Chemical – The work area is	Sprained leg	Foot
2021	move the work object	contaminated by oil spills from	Spranted leg	1001
-021	nove the work object	leaking machines		
uly 6,	Hand cut while lifting steel	Ergonomics – The edges of the	Injured hand	Hand
2021	plate	steel plate are still sharp	,	
August 2,	Falling from scaffolding	Ergonomics - Workers who	Sprained leg	Foot
2021		stand for too long make workers		
		bored and distracted		
August	Hands are cut when trying to	Ergonomics – The process of	Injured hand	Foot
20, 2021	move work objects	moving using human power is		
Contomi-	The avec become are-11	not correct	The error are many	Euro
2 2021	due to exposure to the	the welding heat dazzles the	hlind and exposed too often	£уе
, 2021	welding beam during	eves	so they often water and	
	welding		swell	
September	Cut your hand when you	Ergonomics – The way things	Injured hand	Hand
15, 2021	want to measure a workpiece	work when measuring is less	, ····	
	···· · I	careful		
September	The foot hits the work object	Ergonomics – Repetitive worker	Sprained leg	Foot
28, 2021		mobility makes workers bored		
		and careless, not seeing work		
.	TT 1 1. 1	objects while walking	T · 11 ·	TT 1
Jctober 9,	Hands exposed to sparks	Physics – Welding sparks cause	Injured hand	Hand
2021 Detoher	auring welding	Biology Hoovy rain gauges late	Hand hit the flage	Hand
2000er	Supped due to suppery work	of puddles in the work area	i leau illi ine floor	пеаа
1, 2021	swollen eves exposed to	Physics – Iron scraps bounce off	The eyes become swoller	eve
7, 2021	workpiece splashes during	the grinding blade	The cycs become swonen	cyc
,	cutting			
December	Feet hit by work object	Ergonomics – Poor hand grip	Feet become sore	neck
0 2021	- ,	position		

Table 2. Routine pier repair work accident data January-December 2021

Opsi 2024, Vol. 17, No. 1

3.2. Job Safety Analysis

In construction work, *Job Safety Analysis* (JSA) is needed to identify risk and potential hazards related to a series of jobs [29]. The JSA also kind of technique could helps improve productivity by detecting errors in production processes [44]. The JSA for the Merak Port repair work is mention in Annex 1, including the scoring is performed. By using a job safety analysis form, the author describes the causes of accidents and minimizes the possibility of work accidents based on the risk/hazard control hierarchy. By JSA mentioned that the accident were occurred in the past showing higher risk in several activities, there are no high, 9 medium and 10 low risk category. Some risk mitigation are shall be performed to reduce risk and accident could be eliminated. However analysis and discussion will be elaborated in chapter 4.

3.3. Histogram Diagram

Based on Table 1 according to Ghaisani and Nawawinetu [34] hazard are divided into 5 types, frequency of work accidents and histogram diagram can be shown in Table 3 and Figure 1 respectively.

No	Types of Accidents	Number of Accidents
1	Chemical Accidents	1
2	Biological Accidents	1
3	Physical Accidents	6
4	Ergonomics Accidents	11
5	Psychological Accidents	0

Table 3. Frequency of work accidents for the period January-December 2021

Figure 1. Histogram of work accidents

Figure 1 illustrates the number of accidents that occurred based on the results of previous JSA filling. It can be seen that during the period, ergonomics work accidents often occurred because many work accidents were found due to poor work methods, so that causing harm to the workers themselves.

3.4. Pareto Diagram

A Pareto diagram is a bar graph that depicts problems based on the order of the number of events. The sequence starts with the number of frequent problems, increasing to rare problems. On the chart, the highest (leftmost) bar is followed by the lowest (rightmost) bar . Percentage type of accident is calculated as shown in Table 4 below.

No	Types of Accidents	Amount	Percentage	Cumulative
				Percentage
1	Ergonomics Accidents	11	57.89%	57.89%
2	Physical Accidents	6	31.58%	89.47%
3	Chemical Accidents	1	5.26%	94.74%
4	Biological Accidents	1	5.26%	100%
5	Psychological Accidents	0	0%	100%
	Total	19	100%	

Table 4. Percentage of work accidents

With data on the frequency of the number of work accidents and the percentage of work accidents, a Pareto diagram can be created by applying the 80:20 ratio to identify several important problems. The Pareto diagram that the author created is as shown in Figure 2 below.

Figure 2. Pareto diagram

3.5. Cause and Effect Diagram (Fishbone)

In process , the researcher conducted an interview with the person in charge of the Merak Port pier repair project. The results of the interview were then used to create a cause and effect diagram (fishbone diagram) as shown in Figure 3.

Figure 3. Cause and effect diagram (fishbone) for dominant accidents

The cause and effect diagram was created using 2 (two) types of accidents based on check sheets/log books (notebooks) and Job Safety Analysis (JSA), namely types of ergonomic accidents due to work methods, work positions, equipment, poorly designed equipment, or repeated monotonous movements that reducing work concentration and types of physical accidents due to energy sources strong enough to harm the body such as heat, light, vibration, noise, pressure or radiation. The dominant types of accidents are used to help identify and explain the causes of these frequent accidents.

3.6. 5W+1H

To help determine improvement decisions, the author uses the 5W+1H table as shown in Table 5 based on the causes and effects that have been described in the previous cause and effect diagram.

Cause of accident	Why (why repairs need to be made)	What (what causes work accidents)	Where (where it will be tested)	When (when will it be tested)	Who (who is responsible)	How (how the repairs were carried out)
Human factors	To avoid work accidents for employees	 Workers have minimal knowledge about OHS Not following safe work procedures Not wearing complete PPE 	Place where work projects are carried out	When implementin g work projects	div. company OHS	 Carry out TBM before work is carried out Carry out routine inspections of the work area Provide strict sanctions against workers who violate them Provide OHS training to workers
Method Factors	So that workers are safe when doing their work	 Work procedures are not updated Lack of supervision 	Place where work projects are carried out	During the implementat ion of work projects	div. company OHS	 Updates in using work methods Supervision is carried out
Environ mental factor	To avoid work accidents	 Lack of OHS signs Minimal lighting Water splash due to tidal waves 	Place where work projects are carried out	During the implementat ion of work projects	div. company OHS	 Put OHS signs Provide adequate work lighting Carrying out work away from the seafront
Material Factors	To avoid work accidents	 Sharp workpiece Sparks and residual material from cutting workpieces Heavy workpiece 	Place where work projects are carried out	During the implementat ion of work projects	div. company OHS	 Wear complete and appropriate PPE when doing work
Machine Factor	To avoid work accidents	 Using the wrong machine/not according to procedures Not setting the machine/tool properly Broken machines are still used 	Place where work projects are carried out	During the implementat ion of work projects	div. company OHS	 Training is carried out in the correct use of the machine Set up the tool/machine correctly Updates to machines that are not suitable for use

Table 5. Proposed work risk improvements with 5W + 1	Η
--	---

4. DISCUSSION

Based on data obtained, work accidents were dominated by ergonomic types of accidents which include poor working methods, equipment or how to use tools, and monotonous or repetitive activities such as tripping and being pinched due to high worker mobility. Ergonomic accidents contribute 57.89% and physics accidents 31.58%. Some recommendation arise which comes from 5W+1H analysis, such as training and education, provide strict sanctions against workers when doing violation and use work tools properly and correctly. The recommendations are put as risk mitigation and resulted medium risk reduce from 10 to zero will be expected, and accident will be eliminated.

Meanwhile some researchers stated to reduce risk perceptions associated with unsafe behaviors and accidents, companies must implement a variety of safety programs to improve their safety climate beyond simple safety-related education and training [45], management commitment [46] and build team who administrates ergonomics [47].

5. CONCLUSION

By reviewing the data processing carried out, we conclude that there were 19 work accidents. There are 5 types of work accident factors was occurred. Herewith typical and frequency percentage ergonomic factors 57.89%, physics 31.58%, chemistry 5.26%, biology 5.26%, and psychological factors 0%. The company actually already has an Occupational Safety and Health (OHS) system, but its implementation is not consistent due to the work culture of field workers who are not used to it and feel unproductive when using Personal Protective Equipment (PPE).

There are several risks that can occur when carrying out Port Pier Repair work carried out by PT. Arto Moro Sentosa, including Measurement Risks: hit leg, pinched hands, h ands cut by steel plate, hit his head on the dock vender; Welding Risks: hands exposed to sparks, eyes exposed to sparks and welding rays; Cutting Risks: cut hands, eyes exposed to sparks from a grinding machine; Assembly Risks: leg hitting a steel plate, pinched Hands, slipping into the sea, falling from a Height.

With several potential work accidents may occurred again, the company should carry out improvements by providing training programs on OHS to workers, paying more attention to OHS supervision, giving sanctions to workers who did OHS violation.

REFERENCES

- [1] Y. Alfiansah, B. Kurniawan, M. Peminatan Keselamatan dan Kesehatan Kerja, F. Kesehatan Masyarakat, U. Diponegoro, and B. Keselamatan dan Kesehatan Kerja, "Analisi Upaya Manajemen K3 Dalam Pencegahan dan Pengendalian Kecelakaann Kerja Pada Proyek Konstruksi PT.X SEMARANG," vol. 8, no. 5, 2020.
- [2] Sofian, *Keselamatan dan kesehatan kerja*, no. September 2019. 2017.
- [3] Sama'mur, Penerapan Kesehatan Dan Keselamatankerja(K3) Dengan Pendekatan Job Safety Analysis (Jsa). 2017.
- [4] M. A. Rodrigues *et al.*, "Occupational Health & Safety (OHS) management practices in microand small-sized enterprises: The case of the Portuguese waste management sector," *Saf. Sci.*, vol. 129, p. 104794, 2020, doi: https://doi.org/10.1016/j.ssci.2020.104794.
- [5] M. T. K. R. Indonesia, kecelakaan kerja. Menteri Tenaga Kerja Republik Indonesia.
- [6] N. A. Kurdhi et al., Teknik Industri Dalam Praktek: Pendekatan Holistik Untuk Peningkatan Efisiensi Dan Produktivitas. CV Widina Media Utama, 2023.
- [7] M. A. Karim and W. Hariyono, "Implementation of Occupational Safety and Health (Osh) At Universitas Gadjah Mada Indonesia," IJAEDU- Int. E-Journal Adv. Educ., vol. IV, no. 10, pp. 93– 99, 2018, doi: 10.18768/ijaedu.415412.
- [8] D. Gusti, P. Sien, D. Astawa, and F. Ariany, "Improving Occupational Health and Safety (OHS) implementation in construction project in Bali," *MATEC Web Conf.*, vol. 276, no. 2019, p. 02022, 2019, doi: 10.1051/matecconf/201927602022.

- [9] A. F. Kineber, M. F. Antwi-Afari, F. Elghaish, A. M. A. Zamil, M. Alhusban, and T. J. O. Qaralleh, "Benefits of Implementing Occupational Health and Safety Management Systems for the Sustainable Construction Industry: A Systematic Literature Review," *Sustain.*, vol. 15, no. 17, 2023, doi: 10.3390/su151712697.
- [10] A. B. Sulistyo, I. Rifki, and P. Gautama, "Evaluasi Proyek Fabrikasi Matarbari Unit-02 Dengan Metode Cpm Dan Pert Pt. Dui Esa Unggul," *J. InTent*, vol. 5, no. 1, pp. 14–27, 2022.
- [11] PT. ARTO MORO, "Sejarah perusahaan," 2015.
- [12] P. K. Suma'mur, Keselamatan dan Kesehatan Kerja. 1981.
- [13] A. Floyde, G. Lawson, S. Shalloe, R. Eastgate, and M. D'Cruz, "The design and implementation of knowledge management systems and e-learning for improved occupational health and safety in small to medium sized enterprises," *Saf. Sci.*, vol. 60, pp. 69–76, 2013, doi: 10.1016/j.ssci.2013.06.012.
- [14] S. Ammad, W. S. Alaloul, S. Saad, and A. H. Qureshi, "Personal protective equipment (PPE) usage in construction projects: A scientometric approach," J. Build. Eng., vol. 35, p. 102086, 2021, doi: https://doi.org/10.1016/j.jobe.2020.102086.
- [15] F. Ramadhan, "Analisis Kesehatan dan Keselamatan Kerja (K3) Menggunakan Metode Hazard Identification Risk Assessment and Risk Control (HIRARC)," no. November, 2017.
- [16] R. Sehsah and A. M. Ibrahim, "Personal protective equipment (PPE) use and its relation to accidents among construction workers," pp. 285–295, 2020, doi: 10.23749/mdl.v111i4.9398.
- [17] A. A. CHOLIL, S. SANTOSO, T. R. SYAHRIAL, E. C. SINULINGGA, and R. H. NASUTION, "Penerapan Metode Hiradc Sebagai Upaya Pencegahan Risiko Kecelakaan Kerja Pada Divisi Operasi Pembangkit Listrik Tenaga Gas Uap," J. Bisnis dan Manaj. (Journal Bus. Manag., vol. 20, no. 2, pp. 41–64, 2020.
- [18] J. Atmaja *et al.,* "Penerapan Sistem Pengendalian Keselamatan dan Kesehatan Kerja pada Pelaksanaan Proyek Konstruksi di Kota Padang," *Ed. Oktober,* no. 2, 2018.
- [19] A. B. Sulistyo and A. D. Maulana, "Penerapan Keselamatan Kerja Pada Proses Loading-Unloading Current Transformer Di PT CPSI," pp. 1–15.
- [20] C. T. Jaya, "Safety Adalah Hal Penting Dalam Pekerjaan," 2021.
- [21] K. A. Shamsuddin, M. N. C. Ani, A. K. Ismail, and M. R. Ibrahim, "Investigation the Safety, Health and Environment (SHE) Protection inConstruction Area," *Int. Res. J. Eng. Technol.*, vol. 2, no. 6, pp. 624–636, 2015.
- [22] R. Y. Naulina et al., Kimia Industri. Bandung: CV WIDINA MEDIA UTAMA, 2023.
- [23] P. Thepaksorn, S. Thongjerm, S. Incharoen, W. Siriwong, K. Harada, and A. Koizumi, "Job safety analysis and hazard identification for work accident prevention in para rubber wood sawmills in southern Thailand," J. Occup. Health, vol. 59, no. 6, pp. 542–551, 2017, doi: 10.1539/joh.16-0204-CS.
- [24] W. Li, Y. Sun, Q. Cao, M. He, and Y. Cui, "A proactive process risk assessment approach based on job hazard analysis and resilient engineering," J. Loss Prev. Process Ind., vol. 59, pp. 54–62, 2019, doi: https://doi.org/10.1016/j.jlp.2019.02.007.
- [25] Y. Ilmansyah et al., "Penerapan Job Safety Analysis sebagai Upaya Pencegahan Kecelakaan Kerja dan Perbaikan Keselamatan Kerja di PT Shell Indonesia," *Profisiensi*, vol. 8, no. 1, pp. 15–22, 2020, doi: https://doi.org/10.33373/profis.v8i1.2521.
- [26] M. M. Nasrulloh, N. Budiharti, and H. Galuh, "Upaya Pengendalian Resiko Kecelakaan Kerja Menggunakan Metode Job Safety Analysis Pada Pekerjaan PT. Sumber Alam Raya," J. Valtech, vol. 5, no. 1, pp. 79–86, 2022.
- [27] A. Rahman, D. Djafri, and V. Triana, "The Risk Assessment of Occupational Safety Using Job Safety analysis (JSA) at PT. P&P Lembah Karet Padang," *KnE Life Sci.*, vol. 4, no. 10, p. 365, 2019, doi: 10.18502/kls.v4i10.3741.
- [28] M. A. Umaindra and D. S. Saptadi, "Identifikasi Dan Analisis Risiko Kecelakaan Kerja Dengan Metode Jsa (Job Safety Analysis) Di Departemen Smoothmill PT Ebako Nusantara," Ind. Eng. Online J., vol. 7, no. 1, pp. 1–11, 2018.

- [29] Y. Rasoulzadeh, S. S. Alizadeh, and S. Valizadeh, "Health, Safety and Ergonomically Risk Assessment of Mechanicians using Job Safety Analysis (JSA) Technique in an Iran City," vol. 8, no. 28, pp. 1–11, 2015.
- [30] M. M. J. Robert, S. F. Bonny, and Soputan. M .E Gabby, "Manajemen Risiko Kesehatan Dan Keselamatan Kerja (K3) (Study Kasus Pada Pembangunan Gedung Sma Eben Haezar)," J. Ilm. Media Eng., vol. 4, no. 4, pp. 229–238, 2017.
- [31] R. R. Putri, "Analisis Potensi Bahaya Serta Rekomendasi Perbaikan Dengan Metode Hazard And Operability Study (HAZOPS)," *Ind. Eng. Online J.*, vol. 7, no. 2, 2018.
- [32] K. M. N. Aruan and M. L. Singgih, "Pengendalian Risiko Kecelakaan HSSE pada Proses Pembuatan Pipa Baja," J. Tek. ITS, vol. 10, no. 2, pp. 52–57, 2021, doi: 10.12962/j23373539.v10i2.62628.
- [33] Budi Kho, "Pengertian Diagram Pareto dan Cara Membuatnya," 2021.
- [34] H. Ghaisani and Erwin Dyah Nawawinetu, "Identifikasi Bahaya , Penilaian Risiko Dan Pengendalian Risiko," *Indones. J. Occup. Saf. Heal.*, vol. 3, no. 1, pp. 107–116, 2014.
- [35] A. K. Das, P. K. Nanda, A. Das, and S. Biswas, "Hazards and Safety Issues of Meat and Meat Products," R. L. Singh and S. B. T.-F. S. and H. H. Mondal, Eds., Academic Press, 2019, pp. 145– 168. doi: https://doi.org/10.1016/B978-0-12-816333-7.00006-0.
- [36] B. Fernández-Muñiz, J. M. Montes-Peón, and C. J. Vázquez-Ordás, "Relation between occupational safety management and firm performance," *Saf. Sci.*, vol. 47, no. 7, pp. 980–991, 2009, doi: https://doi.org/10.1016/j.ssci.2008.10.022.
- [37] H. Narvala, G. Mcdonald, and I. Ounis, "Identifying chronological and coherent information threads using 5W1H questions and temporal relationships," *Inf. Process. Manag.*, vol. 60, no. 3, p. 103274, 2023, doi: 10.1016/j.ipm.2023.103274.
- [38] K. Adi Nugraha, "JEPIN (Jurnal Edukasi dan Penelitian Informatika) Klasifikasi Pertanyaan Bidang Akademik Berdasarkan 5W1H menggunakan K-Nearest Neighbors," 2020.
- [39] M. Nur, P. T. Industri, F. Sains, and U. I. N. S. Riau, "Analisis Keselamatan dan Kesehatan Kerja Menggunakan Metode Hazard And Operability Study (HAZOP) Di PT. XYZ," vol. 4, no. 2, pp. 133–138, 2018.
- [40] O. Ivanenko, "IMPLEMENTATION OF RISK ASSESSMENT FOR CRITICAL INFRASTRUCTURE PROTECTION WITH," vol. 2, no. 2, pp. 26–38, 2020, doi: 10.21303/2313-8416.2020.001340.
- [41] D. Ramere and O. T. Laseinde, "Improving the efficiency of medium voltage (MV) distribution lines using risk matrix for optimized maintenance," *Mater. Today Proc.*, 2023, doi: https://doi.org/10.1016/j.matpr.2023.08.149.
- [42] H. Benaddi, N. Laaz, E. El Kettani, and Y. Hannad, "Ontology Model for Public Services in Morocco Based on 5W1H Approach: PSOM-eGovMa," *Procedia Comput. Sci.*, vol. 198, pp. 429– 434, 2022, doi: https://doi.org/10.1016/j.procs.2021.12.265.
- [43] R. Utami, "JSA Pada Pekerjaan PPSU Di Kelurahan Cempaka Putih Timur Jakarta Tahun 2019," Skripsi, pp. 1–81, 2019.
- [44] Z. S. Nezamodini; S. Ahmadabadi, and Z. Mosavianasl, "Application of job safety analysis and inspecting the changes in identification of hazards in a cement industry in Fars province in 2017," *Int. J. Biomed. Public Heal.*, vol. 2, no. 1, pp. 20–26, 2019, doi: 10.22631/ijbmph.2018.125835.1047.
- [45] S. Oah, R. Na, and K. Moon, "The Influence of Safety Climate, Safety Leadership, Workload, and Accident Experiences on Risk Perception: A Study of Korean Manufacturing Workers," *Saf. Health Work*, vol. 9, no. 4, pp. 427–433, 2018, doi: https://doi.org/10.1016/j.shaw.2018.01.008.
- [46] W. M. Alruqi, M. R. Hallowell, and U. Techera, "Safety climate dimensions and their relationship to construction safety performance: A meta-analytic review," Saf. Sci., 2018, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0925753517315382
- [47] V. Y. Siong, J. Azlis-sani, N. Hisyamudin, M. Nor, and M. Nur, "Ergonomic Assessment in Small and Medium Enterprises (SMEs) Ergonomic Assessment in Small and Medium Enterprises (SMEs)," 2018.

JOB SAFETY ANALYSIS

Appendix 1 Job Safety Analysis

*			Category		Low		Low			Low		Low			Low		Low		Low					
			lent	R	1		1			1		1			2		З		1					
		Risk	essm	٩	B3		B3			B3		B3			B3		B2		B3					
	~		Ass	s	A3		A3			AЗ		A3			A2		A3		A3					
: Repairment Job at Merak harbour	: PT. Arto Moro Sentosa		Risk Mitigation		Wear complete PPE when doing work, such as	gloves	1. Carry out routine inspections of the work	area by put work equipment in a flat place	 Wear complete and appropriate PPE such as safety shoes 	1. Carrying out work away from the seafront	and be vigilant when surveying under the dock 2. Wear complete and appropriate PPE such as safety helmet	Training is carried out in the correct use of the	machine, such as using lifting tools and/or use	leverage and transport planes (pry bars, trollevs. etc.).	Wear complete PPE when doing work, such as	gloves and welding glasses	Wear complete PPE when doing work, such as	welding glasses	1. Set up the tool/machine correctly and lifting	carefully and by using a transport plane	(trolley)	2. Wear complete and appropriate PPE when	doing work such as safety shoes.	
			Hazard		sharp steel plate	edge	work equipment	toppled over onto	foot	dock fender		the weight of the	material being	lifted was too heavv	welding sparks		welding flame	light source	stack of steel	plates				
ict name	utor		Category		Γοw		Γow			Γονν		Medium			Medium		Medium		Low					
Proje	Execi		ıent	R	3		3			3		5			5		9		3					Š
		Risk	essn	٩	B2		B2			B2		B2			B2		B1		B2					= Ri
			Ass	s	A3		A3			AЗ		A3			A2		A3		A3					
: August 29, 2022	: January - December 2021 : Merak harbour Banten :		Type of Accident		Hands were cut by a steel	plate while taking measurements	Pinching a foot while moving	a workpiece		hit head on dock fender	during measurement	Muscle strain due to	excessive lifting of plate		eyes exposed to sparks	when welding	eye pain due to exposure to	light when welding	bumped foot while lifting a	steel plate				P = Probability
date	beriod		Date		1/14/2021		2/8/2021			4/15/2021		4/30/2021			5/3/2021		5/17/2021		5/28/2021					everity
Prepared	Working p Location Activity		No		1		2			ю		4			5		9		7					S = S

			2	isk				8	isk		
No	Date	Type of Accident	SF	R	Category	Hazard	Risk Mitigation	s	4	ت ۲	ategory
8	6/4/2021	hand was hit by a spark from	A3 B	2 3	Low	splashing iron	Wear complete PPE when doing work, such as	43 E	ŝ	1	Low
		a grinding machine while cutting a workpiece				pieces from the grinding wheel	long-sleeved work clothes and project gloves				
6	7/23/2021	slipped while moving an object	A2 B	2 5	Medium	spilled oil	Carry out routine inspections of the work area A by avoiding oil spills, placing oil in a special place, cleaning up work areas that have oil spills.	A3 E	m	-	Low
10	7/6/2021	cut his hand while lifting a steel plate	A3 B	2 3	Low	sharp edges of steel plates	Wear complete PPE when doing work, such as A gloves	43 E	m m	-	Low
11	8/2/2021	fell from scaffolding	A2 B	1 6	Medium	slip	1. Supervision is carried out by checking the A	43 E	m m		Low
							strength of scaffolding, 2. Wear complete and appropriate PPE , such as using body harness when working at hight				
							elevation 3. Put OHS signs				
12	8/20/2021	cut his hand while moving the workpiece	A3 B	2 3	Low	sharp edge of steel plate	Wear complete PPE when doing work, such as A gloves	43 E	m m	-	Low
13	9/3/2021	eyes became swollen due to	A3 B	2 5	Medium	source of welding	1. Provide adequate work lighting	42 E	ŝ	2	Low
		welding spatter during welding.				sparks	Wear complete and proper PPE when doing work, such as safety glasses and welding masks				
14	9/15/2021	cut hands when measuring a workpiece	A3 B	2 3	Low	iron and plate materials that have	Wear complete PPE when doing work, such as A gloves	43 E	e E	1	Low
15	9/28/2021	hit your foot on a workpiece	A3 B	2 3	Low	stack of	1. Provide OSH training to workers	43 E	ŝ	1	Low
						workpieces	Carry out routine inspections of the work area by placing workpieces in easily visible and				
							neatly organized,				
							3. Wear complete and appropriate PPE, such as				
							arety shoes 4. Put OHS alert signs				
16	10/9/2021	hand was hit by sparks while	A3 B	1 6	Medium	welding sparks	1. Carry out TBM before work is carried out to A	43 E	ŝ	-	Low
		welding					let operator know the hazard.				
							Wear complete PPE when doing work, such as aloves when using welding equipment				
17	10/21/2021	slipping due to slippery work	A2 B	1 6	Medium	puddles of	Drying the rainwater puddle area, put warning A	A3 E	 m		Low
		area				rainwater	OHS signs	_	_		
18	10/17/2021	eye swollen by splashing	A2 B	2 5	Medium	splashing iron	Wear complete PPE when doing work, such as	A2 E	 	2	Low
		workpiece when cutting		+		pieces from	safety glasses		_	_	
19	12/10/2021	foot hit by a workpiece	A3 B	2 3	Low	slippery hands	1. Wear complete PPE when doing work, such A	A3 E	m	-	Low
						workpieces	as project gloves 2. Put OHS signs.				
S = S	everity	P = Probability	R =	Risk							