MODEL DATA PENGAMBILAN KEPUTUSAN UNTUK ANALISIS DATA TINDAK KRIMINAL

Dedi Trisnawarman

Abstract


Penelitian ini menghasilkan model arsitektur dan model data yang dapat mendukung aplikasi cerdas pengambilan keputusan yang berkaitan dengan analisis data tindak kejahatan. Aplikasi cerdas yang dimaksud adalah suatu aplikasi yang mampu melakukan analisis prediktif terhadap pola kriminal (crime pattern) dengan algoritma-algoritma data mining, tampilan multidimensional analisis dengan Online Analytical Analysis (OLAP), visualisasi dashboard yang mengacu pada Key Performance Indicator (KPI). Model arsitektur yang dihasilkan adalah model arsitektur yang mengintegrasikan banyak sumber data untuk analisis dan model data adalah hasil ekstraksi entitas dan atribut yang relevan dengan analisis yang yang dibutuhkan. Rancangan Data warehouse model yang dihasilkan menggunakan metode bottom-up Kimball. Metode pengumpulan data dengan cara survey ke lapangan yaitu ke pusat data kriminalisme dari instansi pemerintah dan pihak yang terkait (data sekunder), dan melalui interview terhadap pihak yang terkait (data primer). Pemodelan data menghasilkan star schema dengan tiga table fakta dan 13 tabel dimensi. Tabel fakta (fact table )yang dihasilkan yaitu: fact table case_analysis, fact table arrest_analysis dan fact table summon_analysis, sedangkan table dimensi yang dihasilkan terdiri dari: dim case, dim crime_scene, dim time, dim position, dim modus, dim DPO, dim visum, dim witness, dim police_officer, dim crime, dim convey, dim suspect, dim physical, dim iklim, dim demografi. Model schema yang dihasilkan digunakan untuk mendukung aplikasi cerdas dalam hal optimasi query untuk data yang besar dan tampilan multidimensional analisis.

References


Adderley R, Bond J., 2008. Predicting crime scene attendance. Policing: An International Journal of Police Strategies & Management Vol. 31 No. 2, pp. 292-305

Baumgartner K., Ferrari S., Palermo G., 2008. Constructing Bayesian networks for kriminal profiling from limited data. Knowledge-Based Systems. journal homepage: www.elsevier.com/locate/knosy

Blattenberger G., Fowlesy R., Krantzz J., 2010. Bayesian Models to Predict the Return to Prison. Section on Bayesian Statistical Science – JSM

Bruckner R.M, List B, Josef S., 2001. Developing Requirements for Data Warehouse Systems with Use Cases. Seventh Americas Conference on Information Systems

Chan P. K., Whar S. Y, Marlon D., 2007. Data Warehouse Model for Audit Trail Analysis in Workflows. IEEE International Conference on e-Business Engineering (ICEBE 2007)

Chan J. O., 2004. Building Data Warehouses Using The Enterprise Modeling Framework. Journal of International technology and Information Management Volume 13, Number 2

Connoly T., Begg C., 2010. Database Systems: A Practical Approach to Design, Implementation, and Management. (Fifth Edition). USA. Addison-Wesley, Longman Inc.

Dahbur K., Muscarello T. 2003. Classification system for serial kriminal patterns. Artificial Intelligence and Law 11: 251–269

Daniel L., Moody., 2000. From Enterprise Models to Dimensional Models: A Methodology for Data Warehouse and Data Mart Design. Proceedings of the International Workshop on Design and Management of Data Warehouses (DMDW) Stockholm, Sweden, June 5-6

Giorgini, P., Rizzi. S., & Garzetti, M., 2007. GRAnD: A goal-oriented approach to requirement analysis in data warehouses. Decision Support System, vol. 45(1), 4-21.

Golfarelli M, Maio D and Deis S.R., 1998. The Dimensional Fact Model: A Conceptual Model For Data Warehouses. IJCIS, Volume 7

Golfarelli M., 2009. User Requirements to Conceptual Design in Data Warehouse Design – a Survey

Hsien Yu. C, Ward M.W, Morabito M, and Ding W., 2011. Crime Forecasting Using Data Mining Techniques CrimeForecasting-IEEE 11th International Conference on Data Mining Workshops

Huysmans J., Martens1 D,, Baesens B., Vanthienen J., and Van Gestel T. 2006. Country Corruption Analysis with Self Organizing Maps and Support Vector Machines, WISI, LNCS 3917, pp. 103–114

Kimball R., Margy R., 2010. The Kimball Group Reader: Relentlessly Practical Tools for Data Warehousing and Business Intelligence. Indianapolis. Wiley Publishing, Inc.

Malathi and Baboo S., 2011. Enhanced Algorithms to Identify Change in Crime Patterns. IJCOPI Vol. 2, No.3, Sep-Dec, pp. 32-38.

Nath, S. 2007. Crime data mining, Advances and innovations in systems, K. Elleithy (ed.). Computing Sciences and Software Engineering, 405-409

Oatley G., Ewart B., Zeleznikow J., 2006. Decision support systems for police: Lessons from the application of data mining techniques to ‘‘soft’’ forensic evidence Artificial Intelligence and Law 14: 35–100

Rastika I., 2012. Setiap 91 Detik, Terjadi Satu Kejahatan di Indonesiahttp://nasional.kompas.com/read/2012/12/26/15260465/Setiap.91.Detik, diakses 20 Desember 2014

Riesen M. and Serpen G., 2009. A Bayesian Belief Network Classifier for Predicting Victimization in National Crime Victimization Survey. ICAI

Shaker H. A, Abdeltawab M. A., Ali H. E., 2011. A proposed model for data warehouse ETL processes. Journal of King Saud University Computer and Information Sciences

Thangavelu A, Sathyaraj S.R, Sridhar R. and Balasubramanian S., 2012. Association Rule - Spatial Data Mining Approach for Geo-Referenced in Crime to Crime Analysis, CIIT International Journal of Data Mining and Knowledge Engineering, Vol 4, No 1, January

Tsois, A., Karayannidis, N., & Sellis, T., 2001. MAC: Conceptual data modeling for OLAP. Proceedings International Workshop on Design and Management of Data Warehouses. Interlaken, Switzerland


Refbacks

  • There are currently no refbacks.