PERBAIKAN INTERPOLASI GERAKKAN MODEL SKELETON 3D DARI DATASET HASIL KAMERA KINECT

Darma Rusjdi, Dewi Arianti Wulandari, Efy Yosrita

Abstract


Abstract
The Kinect camera's dataset can be used for training and testing of human movement recognition using a deep learning approach, in addition to tracking and estimating the position and position of the human body. Improvement of human movement which is covered by other body parts is still a challenge. The research objective: to design a repair application to move the 3D skeleton model from the Kinect camera dataset using the 3D interpolation histogram smoothing approach on the human body. The study was in the form of a simulation of a skeleton model movement improvement in the context of developing a key-frame based animation application through Kinect camera recording. The prototype development method goes through the cycle stages of analysis, design, implementation. The initial analysis stage selects the kinect camera dataset by examining the file format and data structure. Furthermore, the development for data improvement through the 3D interpolation refinement approach. Movement improvement in terms of measurement of interpolated resultant errors from each time t0, t1, t2 and t3 histogram using the RMSE method and visual observation. showed significant results close to normal movement.
Keywords : dataset, kinect camera, interpolation, skeleton model


Dataset hasil kamera Kinect dapat digunakan untuk pelatihan dan pengujian pengenalan gerakkan manusia dengan pendekatan deep learning, selain tracking dan estimasi letak dan posisi tubuh manusia. Perbaikan gerakkan manusia yang tertutup bagian tubuh lainnya masih menjadi tantangan. Tujuan penelitian: membuat rancang bangun aplikasi perbaikan gerakkan model skeleton 3D dari dataset hasil kamera Kinect menggunakan pendekatan penghalusan histogram interpolasi 3D pada bagian tubuh manusia. Kajian berupa simulasi perbaikan gerakkan model skeleton dalam rangka pengembangan aplikasi animasi berbasis key-frame melalui perekaman kamera Kinect. Metode pengembangan prototitpe melalui tahapan siklus analisis, disain, implementasi. Tahap analisis awal memilih dataset hasil kamera kinect dengan mengkaji format file dan struktur data. Kemudian mengekstraksi beberapa kategori gerakkan kedalam kedalam format file untuk eksperimen. Melalui disain awal pengembangan program dilakukan penyesuaian skala angka untuk menghasilkan histogram yang dapat memperlihatkan bagian kesalahan gerakkan secara signikan menggunakan Root Mean Squared Error (RMSE). Selanjutnya pengembangan untuk perbaikan data melalui pendekatan penghalusan interpolasi 3D. Perbaikan gerakkan ditinjau dari pengukuran kesalahan resultante interpolasi dari setiap watu t0, t1, t2 dan t3 histogram dengan metode RMSE dan pengamatan secara visual. menunjukkan hasil cukup signifikan mendekati gerakkan yang normal.
Kata Kunci : dataset, kamera kinect, interpolasi, model skeleton


Keywords


dataset; kinect camera; interpolation; skeleton model

Full Text:

PDF

References


Etemad , S. Ali, Ali Arya, Avi Parush and Steve DiPaola (2016), Perceptual validity in animation of human motion, Computer Animation And Virtual Worlds,; 27:58–71

Han, F.; B. Reily; W. Hoff; and H. Zhang.(2016). Space-time representation of people based on 3d skeletal data: a review. arXiv preprint arXiv:1601.01006, 2016.

Kao, J.-Y.; Ortega, A.; Tian, D.; Mansour, H.; Vetro, A. (2019). Graph Based Skeleton Modeling for Human Activity Analysis. Mitsubishi Electric Research Laboratories. http://www.merl.comTR2019-037 June 28, 2019

Papadopoulos, G.T.; Axenopoulos, A.; Daras, P. Real-time skeleton-tracking-based human action recognition using kinect data. In Proceedings of the International Conference on Multimedia Modeling, Dublin, Ireland, 6–10 January 2014; pp. 473–483.

Paul, S.N.; Singh, Y.J. Survey on Video Analysis of Human Walking Motion. Int. J. Signal Process. Image Process. Pattern Recognit. 2014, 7, 99–122. [CrossRef]

Presti, L.L.; Cascia, M.L. 3D Skeleton-based Human Action Classification: A Survey. Pattern Recognit. 2016, 53, 130–147.

Roanna Lun. 2015, A Survey of Applications and Human Motion Recognition with Microsoft Kinect. Electrical Engineering & Computer Science Faculty Publications

Rusjdi, D, Pengembangan AMORIK Menggunakan Metode Garis Singgung Terhadap Dua Lingkaran Dan Persamaan Kurva Bezier Orde Dua, Jurnal Petir, ISSN: 1978-9262, vol.9 no.1 Januari 2016

S. Song, C. Lan, J. Xing, W. Zeng, and J. Liu. An Endto-End Spatio-Temporal Attention Model for Human Action Recognition from Skeleton Data. In AAAI, volume 1, page 7, 2017. Sarafianos, N., Boteanu, B., Ionescu, B., & Kakadiaris, I. A. (2016). 3D Human pose estimation: A review of the literature and analysis of covariates. Computer Vision and Image Understanding, 152, 1–20.

Xia, L.,, Chen, C.C., and Aggarwal, JK.. View Invariant Human Action Recognition Using Histograms of 3D Joints. Computer Vision and Pattern Recognition Workshops (CVPRW), 2012


Refbacks

  • There are currently no refbacks.