Diabetic Retinopathy Severity Level Classification Based on Fundus Image Using Convolutional Neural Network (CNN)

MS Hendriyawan Achmad, Wahyu Saputro RM

Abstract


Diabetic retinopathy is an eye disease and is a complication of diabetes mellitus. The longer a person suffers from diabetes mellitus, the more likely they are to experience diabetic retinopathy. Diabetic retinopathy is divided into two types, namely Non-Proliferative Diabetic Retinopathy (NPDR) with 4 phases (normal, mild, moderate and severe) and Pre-proliferative Diabetic Retinopathy (PDR). To classify the severity of this disease requires an expert doctor and takes a long time. This study applies the Convolutional Neural Network (CNN) method to fundus image input to classify the severity of diabetic retinopathy, namely mild, moderate, severe, or regular. The fundus image dataset for training and testing was taken from the APTOS 2019 dataset. The pre-processing stage of the fundus image includes: resizing, Contrast Limited Adaptive Histogram Equalization (CLAHE), and gaussian filtering. After that, classification is carried out using the CNN Model, consisting of a convolution layer, a pooling layer, a dropout layer, and a fully connected layer. The results of the CNN model implementation show a classification accuracy of 75% in the training process and 73% in the model validation process. Meanwhile, in the confusion matrix testing process, the accuracy is 68%, the precision is 69%, and the recall is 68%.

Keywords


Diabetic Retinopathy; Fundus Image; PDR; NPDR; CNN

Full Text:

PDF

References


W. Wang and A. C. Y. Lo, “Diabetic retinopathy: Pathophysiology and treatments,” Int. J. Mol. Sci., vol. 19, no. 6, 2018, doi: 10.3390/ijms19061816.

M. Yusran, “Retinopati Diabetik: Tinjauan Kasus Diagnosis dan Tatalaksana,” JK Unila, vol. 1, pp. 578–582, 2017.

S. Nugroho, “Pencegahan Dan Pengendalian Diabetes Melitus Melalui Olahraga,” Medikora, vol. IX, no. 1, 2015, doi: 10.21831/medikora.v0i1.4640.

A. A. L. Harahap, “Karakteristik Penderita Retinopati Diabetik Yang Dirawat Inap Di Rsud Dr. Pirngadi Kota Medan Tahun 2013-2016,” Universitas Sumatra Utara, Medan, 2017.

D. T. Susetianingtias, S. Madenda, Rodiah, and Fitrianingsih, Pengolahan Citra Fundus Diabetik Retinopati, 1st ed. Jakarta: Penerbit Gunadarma, 2017.

S. AULIA, S. HADIYOSO, and D. N. RAMADAN, “Analisis Perbandingan KNN dengan SVM untuk Klasifikasi Penyakit Diabetes Retinopati berdasarkan Citra Eksudat dan Mikroaneurisma,” ELKOMIKA J. Tek. Energi Elektr. Tek. Telekomun. Tek. Elektron., vol. 3, no. 1, p. 75, 2015, doi: 10.26760/elkomika.v3i1.75.

V. C. Lima, G. C. Cavalieri, M. C. Lima, N. O. Nazario, and G. C. Lima, “Risk factors for diabetic retinopathy: A case-control study,” Int. J. Retin. Vitr., vol. 2, no. 1, pp. 1–7, 2016, doi: 10.1186/s40942-016-0047-6.

I. W. Suartika E. P, A. Y. Wijaya, and R. Soelaiman, “Klasifikasi Citra Menggunakan Convolutional Neural Network (CNN) pada Caltech 101,” J. Tek. ITS, vol. 5, no. 1, 2016, doi: 10.12962/j23373539.v5i1.15696.

L. Heryawan, “Deteksi Dini Retinopati Diabetik dengan Pengolahan Citra Berbasis Morfologi Matematika,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 11, no. 2, pp. 209–218, 2017, doi: 10.22146/ijccs.24761.

M. E. Al Rivan and T. Juangkara, “Identifikasi Potensi Glaukoma dan Diabetes Retinopati Melalui Citra Fundus Menggunakan Jaringan Syaraf Tiruan,” J. Tek. Inform. dan Sist. Inf., vol. 6, no. 1, pp. 43–48, 2019, doi: 10.35957/jatisi.v6i1.158.

R. Munarto and M. Ali Setyo Yudoyono, “Klasifikasi Katarak Objek Optic Disc Citra Fundus Retina Menggunakan Support Veactor Machine,” J. Ilm. Setrum, vol. 8, no. 1, pp. 84–95, 2019.

T. G. Adi Putranto and I. Candradewi, “Sistem Klasifikasi Tingkat Keparahan Retinopati Diabetik Menggunakan Support Vector Machine,” Indones. J. Electron. Instrum. Syst., vol. 8, no. 1, pp. 37–48, 2018, doi: 10.22146/ijeis.31206.

S. F. Handono, F. T. Anggraeny, and B. Rahmat, “Implementasi Convolutional Neural Networks (CNN) untuk Deteksi Retinopati Diabetik,” J. Inform. dan Sist. Inf., vol. 1, no. 1, pp. 669–678, 2020.

K. H. Mahmud, Adiwijaya, and S. Al Faraby, “Klasifikasi Citra Multi-Kelas Menggunakan Convolutional Neural Network,” e-Proceeding Eng., vol. 6, no. 1, pp. 2127–2136, 2019.

M. Santoso, T. Indriyani, and R. E. Putra, “Deteksi Microaneurysms Pada Citra Retina Mata Menggunakan Matched Filter,” INTEGER J. Inf. Technol., vol. 2, no. 2, pp. 59–68, 2017.


Refbacks

  • There are currently no refbacks.