Sentiment Analysis of Depression Detection on Twitter Social Media Users Using the K-Nearest Neighbor Method
Abstract
Keywords
Full Text:
PDFReferences
P. Antinasari, R. S. Perdana, and M. A. Fauzi, “Analisis Sentimen Tentang Opini Film pada Dokumen Twitter Berbahasa Indonesia Menggunakan Naive Bayes dengan Perbaikan Kata Tidak Baku Human Detection and Tracking View project Smart Mobile Navigation System View project,” no. October, 2017, [Online]. Available: http://j-ptiik.ub.ac.id.
J. Degenhard, “Forecast of the number of Twitter users in Indonesia from 2017 to 2026,” Statista.com, 2020. https://www.statista.com/forecasts/1145550/twitter-users-in-indonesia.
W. P. Ali, Y. Sibaroni, and S. Si, “Analisis Sentimen Masyarakat Terhadap Kinerja Presiden Indonesia Dalam Aspek Ekonomi , Kesehatan , dan Pembangunan Berdasarkan Opini dari Twitter,” e-Proceeding Eng., vol. 6, no. 2, pp. 8637–8649, 2019.
HIMPSI, “Seri Sumbangan Pemikiran Psikologi untuk Bangsa Ke-5 Kesehatan Jiwa dan Resolusi Pascapandemi di Indonesia,” Himpsi.or.Id, no. September 2019, p. 13, 2020, [Online]. Available: https://himpsi.or.id/blog/pengumuman-2/post/kesehatan-jiwa-dan-resolusi-pascapandemi-di-indonesia- panduan-penulisan-132.
B. Y. Ziwei and H. N. Chua, “An application for classifying depression in tweets,” ACM Int. Conf. Proceeding Ser., pp. 37–41, 2019, doi: 10.1145/3366650.3366653.
John Elflein, “Depression level increases during the COVID-19 pandemic worldwide June 2020, by age,” Statista.com, 2020. https://www.statista.com/statistics/1184765/depression-level-increases-in-adults-due- to-covid-by-age-worldwide/.
M. Deshpande and V. Rao, “Depression detection using emotion artificial intelligence,” Proc. Int. Conf. Intell. Sustain. Syst. ICISS 2017, no. Iciss, pp. 858–862, 2018, doi: 10.1109/ISS1.2017.8389299.
R. Wald, T. Khoshgoftaar, and C. Sumner, “Machine prediction of personality from Facebook profiles,” Proc. 2012 IEEE 13th Int. Conf. Inf. Reuse Integr. IRI 2012, vol. 2, pp. 109–115, 2012, doi: 10.1109/IRI.2012.6302998.
Y. Li, B. Hu, X. Zheng, and X. Li, “EEG-Based Mild Depressive Detection Using Differential Evolution,” IEEE Access, vol. 7, pp. 7814–7822, 2019, doi: 10.1109/ACCESS.2018.2883480.
H. Cai et al., “A Pervasive Approach to EEG-Based Depression Detection,” Complexity, vol. 2018, 2018, doi: 10.1155/2018/5238028.
K. Chanda, P. Bhattacharjee, S. Roy, and S. Biswas, “Intelligent Data Prognosis of Recurrent of Depression in Medical Diagnosis,” ICRITO 2020 - IEEE 8th Int. Conf. Reliab. Infocom Technol. Optim. (Trends Futur. Dir., pp. 840–844, 2020, doi: 10.1109/ICRITO48877.2020.9197843.
X. Li, T. Cao, S. Sun, B. Hu, and M. Ratcliffe, “Classification study on eye movement data: Towards a new approach in depression detection,” 2016 IEEE Congr. Evol. Comput. CEC 2016, pp. 1227–1232, 2016, doi: 10.1109/CEC.2016.7743927.
M. S. Saputri, R. Mahendra, and M. Adriani, “Emotion Classification on Indonesian Twitter Dataset,” Proc. 2018 Int. Conf. Asian Lang. Process. IALP 2018, no. November, pp. 90–95, 2019, doi: 10.1109/IALP.2018.8629262.
A. Dirgayunita, “Depresi: Ciri, Penyebab dan Penangannya,” J. An-Nafs Kaji. Penelit. Psikol., vol. 1, no. 1, pp. 1–14, 2016, doi: 10.33367/psi.v1i1.235.
M. F. Muzakki, R. F. Umbara, F. Informatika, and U. Telkom, “Analisis Sentimen Mahasiswa Terhadap Fasilitas Universitas Telkom Menggunakan Metode Jaringan Saraf Tiruan Dan Tf-Idf,” vol. 6, no. 2, pp. 8608–8616, 2019.
Refbacks
- There are currently no refbacks.