Slope Stability Analysis and Disposal Geometry Design Based on Saturation Level at PT. Prolindo Cipta Nusantara

Authors

  • Yudho Dwi Galih Cahyono Institut Teknologi Adhi Tama Surabaya
  • Dandi Gusti Ode Institut Teknologi Adhi Tama Surabaya
  • Eko Budi Saputro Teknik Pertambangan, Fakultas Teknologi Industri, Institut Teknologi Adhi Tama Surabaya

DOI:

https://doi.org/10.31315/jmel.v8i2.13197

Abstract

Prolindo Cipta Nusantara Ltd. location is on Sebamba Baru Village, Sungai Lobam. Tanah Bambu, South Kalimantan and it had land permitted around 350 hectares. This company is engaged in the coal mining business. In the beginning of mining process is stripping the overburden and disposal is required to accommodate overburden materials from pit. The method used to determine and analyze the problems in this study was boundary equilibrium method assisted by Side 6.0 software to make disposal slope modeling and analyze disposal slope safety factor. The result was making recommendation for safe and stable disposal to accommodate overburden materials from pit. The recommended disposal slope was disposal slope design in natural condition with a single slope geometry, 10 meters for the height, and 35 degrees for a slope angle. The overall slope geometry had a height of 90 meters and a slope angle of 10 degrees and it produced a safety factor value of 1,302 and the disposal slope design in a saturated condition with a single slope geometry was 10 meters high and 30 degrees for a slope angle. The height of overall slope geometry was 84 meters and tilt angle was 9 degrees and it produced a safety factor value of 1.257.

References

Batali, L., & Andreea, C. (2016). Slope Stability Analysis Using the Unsaturated Stress Analysis. Case Study. Procedia Engineering, 143(Ictg), 284–291. https://doi.org/10.1016/j.proeng.2016.06.036

Bittelli, M., Valentino, R., Salvatorelli, F., & Rossi Pisa, P. (2012). Monitoring soil-water and displacement conditions leading to landslide occurrence in partially saturated clays. Geomorphology, 173–174, 161–173. https://doi.org/10.1016/j.geomorph.2012.06.006

Cahyono, Y. (2021). Analisis Kestabilan Lereng Highwall berdasarkan tingkat kejenuhan dengan metode probabilitas pada tambang batubara PT. X Kalimantan Timur. Geomine, 9(3), 229–238. https://jurnal.teknologiindustriumi.ac.id/index.php/JG/article/view/993/pdf

Cahyono, Y. D. G., Putri, F. A. R., & Dinoy, E. (2023). Kajian Pengaruh Geometri Jalan Angkut Terhadap Produktivitas di PT. Karebet Mas Indonesia, Site Kutai Energi Kalimantan Timur. Jurnal GEOSAPTA, 9(1), 53. https://doi.org/10.20527/jg.v9i1.12860

Griffiths, D. V. (1990). Failure Criteria Interpretation Based on Mohr‐Coulomb Friction. Journal of Geotechnical Engineering, 116(6), 986–999. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:6(986)

Guo, M., Ge, X., & Wang, S. (2011). Slope stability analysis under seismic load by vector sum analysis method. Journal of Rock Mechanics and Geotechnical Engineering, 3(3), 282–288. https://doi.org/10.3724/SP.J.1235.2011.00282

Hoek, E., & Bray, J. (2004). Rock Slope Engineering. In C. D. Wyllie & W. C. Mah (Eds.), Journal of Chemical Information and Modeling (4th ed., Vol. 53, Issue 9). Spon Press.

Kirin, S., Li, W., Brzakovic, M., Miljanovic, I., & Sedmak, A. (2020). Rules of Risk Management - Case Study of Open Pit Mine. Procedia Structural Integrity, 28, 764–769. https://doi.org/10.1016/J.PROSTR.2020.10.088

Li, D. Q., Qi, X. H., Phoon, K. K., Zhang, L. M., & Zhou, C. B. (2014). Effect of spatially variable shear strength parameters with linearly increasing mean trend on reliability of infinite slopes. Structural Safety, 49, 45–55. https://doi.org/10.1016/j.strusafe.2013.08.005

Morales, N., Nancel-Penard, P., & Espejo, N. (2023). Development and analysis of a methodology to generate operational open-pit mine ramp designs automatically. Optimization and Engineering, 24(2), 711–741. https://doi.org/10.1007/S11081-021-09702-3

Morgenstern, N. R. , & P. V. E. (1967). “A numerical method for solving the equations of stability of general slip surfaces.” The Computer Journal, Vol 9(No 4), 388–393.

Okeke, I. J., Sahoo, K., Kaliyan, N., & Mani, S. (2020). Life cycle assessment of renewable diesel production via anaerobic digestion and Fischer-Tropsch synthesis from miscanthus grown in strip-mined soils. Journal of Cleaner Production, 249, 119358. https://doi.org/10.1016/J.JCLEPRO.2019.119358

Pipatpongsa, T., Khosravi, M., Takemura, J., Leelasukseree, C., & Doncommul, P. (2016). Modelling concepts of passive arch action in undercut slopes. 507–520. https://doi.org/10.36487/acg_rep/1604_33_pipatpongsa

Putra, M. H. Z., Kartiko, R. D., Soemantidiredja, P., Sadisun, I. A., & Tohari, A. (2020). Pengaruh Zona Jenuh Air Terhadap Kestabilan Lereng Di Weninggalih, Kabupaten Bandung Barat. RISET Geologi Dan Pertambangan, 30(1), 119. https://doi.org/10.14203/risetgeotam2020.v30.1086

Shen, J., Karakus, M., & Xu, C. (2013). Chart-based slope stability assessment using the Generalized Hoek-Brown criterion. International Journal of Rock Mechanics and Mining Sciences, 64, 210–219. https://doi.org/10.1016/j.ijrmms.2013.09.002

Wang, F., Jiang, B., Chen, S., & Ren, M. (2019). Surface collapse control under thick unconsolidated layers by backfilling strip mining in coal mines. International Journal of Rock Mechanics and Mining Sciences, 113, 268–277. https://doi.org/10.1016/J.IJRMMS.2018.11.006

Wang, Y., Hou, D., Qi, S., O’Connor, D., & Luo, J. (2019). High stress low-flow (HSLF) sampling: A newly proposed groundwater purge and sampling approach. Science of the Total Environment, 664, 127–132. https://doi.org/10.1016/j.scitotenv.2019.01.423

Weyer, V. D., Truter, W. F., Lechner, A. M., & Unger, C. J. (2017). Surface-strip coal mine land rehabilitation planning in South Africa and Australia: Maturity and opportunities for improvement. Resources Policy, 54, 117–129. https://doi.org/10.1016/J.RESOURPOL.2017.09.013

Xu, T., Jaime Gómez-Hernández, J., Zhou, H., & Li, L. (2013). The power of transient piezometric head data in inverse modeling: An application of the localized normal-score EnKF with covariance inflation in a heterogenous bimodal hydraulic conductivity field. Advances in Water Resources, 54, 100–118. https://doi.org/10.1016/j.advwatres.2013.01.006

Yarmuch, J. L., Brazil, M., Rubinstein, H., & Thomas, D. A. (2020). Optimum ramp design in open pit mines. Computers & Operations Research, 115, 104739. https://doi.org/10.1016/J.COR.2019.06.013

Downloads

Published

2025-01-08