Evaluasi Akurasi Data LiDAR ALS-70 untuk Pemodelan 3D di Area Bandara Perkotaan: Studi Kasus Bandara Sultan Thaha, Jambi
DOI:
https://doi.org/10.31315/imagi.v5i1.14482Keywords:
ALS-70, Kalibrasi, Akurasi, Pemodelan 3-Dimensi, PerkotaanAbstract
Penelitian ini bertujuan untuk mengevaluasi akurasi data ALS-70 di area Bandara Sultan Thaha, Jambi, dengan fokus pada proses boresight calibration dan pengaruh penghapusan ground control points (GCP) yang dianggap anomali. Proses diawali dengan analisis tinggi terbang yang menunjukkan adanya variasi elevasi. Kemudian dilakukan perhitungan dan penelitian yang memperoleh nilai akhir memenuhi spesifikasi ALS-70 dan standar ketelitian vertikal SNI Orde 1. Selain hasil kuantitatif, data yang belum terkalibrasi menunjukkan kemampuan untuk mengenali lingkungan terbangun, membuka peluang peng-gunaan dalam respons cepat. Penelitian ini menekankan pentingnya pendekatan iteratif dan statistik dalam memastikan kualitas data LiDAR di perkotaan. Outlook dari penelitian ini merekomendasikan otomatisasi deteksi anomali dan integrasi dengan data penginderaan jauh lain untuk memperkaya analisis, serta validasi multi-kondisi untuk memperluas generalisasi hasil.
References
Altuntas, C. (2019). Urban area change visualization and analysis using high density spatial data from time series aerial images. Reports on Geodesy and Geoinformatics, 107(1), 1–12. https://doi.org/10.2478/rgg-2019-0001.
Badan Informasi Geospasial Indonesia. (2014). Peraturan Kepala Badan Informasi Geospasial Nomor 15 Tahun 2014 tentang Pedoman Teknis Ketelitian Peta Dasar. https://peraturan.bpk.go.id/Details/269446/perka-big-no-15-tahun-2014.
Badan Informasi Geospasial Indonesia. (2018). Peraturan Badan Informasi Geospasial Nomor 6 Tahun 2018 tentang Perubahan atas Peraturan Kepala Badan Informasi Geospasial Nomor 15 Tahun 2014 tentang Pedoman Teknis Ketelitian Peta Dasar. https://peraturan.bpk.go.id/Details/269444/peraturan-big-no-6-tahun-2018.
Beni, T., Borselli, D., Bonechi, L., Lombardi, L., Gonzi, S., Melelli, L., Turchetti, M. A., Fanò, L., D’Alessandro, R., Gigli, G., & Casagli, N. (2023). Laser scanner and UAV digital photogrammetry as support tools for cosmic-ray muon radiography applications: An archaeological case study from Italy. Scientific Reports, 13(1), 19983. https://doi.org/10.1038/s41598-023-46661-4.
Berger, A., & Kiefer, M. (2021). Comparison of Different Response Time Outlier Exclusion Methods: A Simulation Study. Frontiers in Psychology, 12, 1-13. https://doi.org/10.3389/fpsyg.2021.675558
Chekole, S. D. (2014). Surveying with GPS, total station and terresterial laser scaner: A comparative study School of Architecture and the Built Environment. Thesis. School of Architecture and the Built Environment Royal Institute of Technology (KTH) Stockholm.
Coops, N. C., Tompalski, P., Goodbody, T. R. H., Queinnec, M., Luther, J. E., Bolton, D. K., White, J. C., Wulder, M. A., van Lier, O. R., & Hermosilla, T. (2021). Modelling lidar-derived estimates of forest attributes over space and time: A review of approaches and future trends. Remote Sensing of Environment, 260, 112477. https://doi.org/10.1016/j.rse.2021.112477.
Di Benedetto, A., & Fiani, M. (2022). Integration of LiDAR Data into a Regional Topographic Database for the Generation of a 3D City Model. Dalam E. Borgogno-Mondino & P. Zamperlin (Ed.), Geomatics for Green and Digital Transition (hlm. 193–208). Springer International Publishing.
Dong, P., & Chen, Q. (2017). LiDAR Remote Sensing and Applications (1 ed.). CRC Press. https://doi.org/10.4324/9781351233354.
Haala, N., Kölle, M., Cramer, M., Laupheimer, D., & Zimmermann, F. (2022). Hybrid georeferencing of images and LiDAR data for UAV-based point cloud collection at millimetre accuracy. ISPRS Open Journal of Photogrammetry and Remote Sensing, 4, 100014. https://doi.org/10.1016/j.ophoto.2022.100014.
Hasheminasab, M., Zhou, T., & Habib, A. (2022). Multi-Modal Triangulation For In-Situ Boresight Calibration Of Frame And Line Cameras Onboard Gnss/Ins-Assisted UAVS. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B2-2022, 51–57. XXIV ISPRS Congress “Imaging today, foreseeing tomorrow”, Commission II - 2022 edition, 6–11 June 2022, Nice, France. https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-51-2022.
Jouybari, A., Bagherbandi, M., & Nilfouroushan, F. (2023). Numerical Analysis of GNSS Signal Outage Effect on EOPs Solutions Using Tightly Coupled GNSS/IMU Integration: A Simulated Case Study in Sweden. Sensors, 23(14), 1-22. https://doi.org/10.3390/s23146361.
Keyetieu, R., & Seube, N. (2019). Automatic Data Selection and Boresight Adjustment of LiDAR Systems. Remote Sensing, 11(9), 1087. https://doi.org/10.3390/rs11091087.
Kuras, A., Brell, M., Rizzi, J., & Burud, I. (2021). Hyperspectral and Lidar Data Applied to the Urban Land Cover Machine Learning and Neural-Network-Based Classification: A Review. Remote Sensing, 13(17), 1-39. https://doi.org/10.3390/rs13173393.
Li, D., Guo, H., Wang, C., Dong, P., & Zuo, Z. (2016). Improved bore-sight calibration for airborne light detection and ranging using planar patches. Journal of Applied Remote Sensing, 10(2), 024001. https://doi.org/10.1117/1.JRS.10.024001.
Li, X., Li, X., Huang, J., Shen, Z., Wang, B., Yuan, Y., & Zhang, K. (2021). Improving PPP–RTK in urban environment by tightly coupled integration of GNSS and INS. Journal of Geodesy, 95(12), 132. https://doi.org/10.1007/s00190-021-01578-6.
Liao, Y., Li, J., Kang, S., Li, Q., Zhu, G., Yuan, S., Dong, Z., & Yang, B. (2023). SE-Calib: Semantic Edge-Based LiDAR–Camera Boresight Online Calibration in Urban Scenes. IEEE Transactions on Geoscience and Remote Sensing, 61, 1–13. https://doi.org/10.1109/TGRS.2023.3278024.
Lin, A., Sun, X., Wu, H., Luo, W., Wang, D., Zhong, D., Wang, Z., Zhao, L., & Zhu, J. (2021). Identifying Urban Building Function by Integrating Remote Sensing Imagery and POI Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 8864–8875. https://doi.org/10.1109/JSTARS.2021.3107543.
Lindgren, N., Wästlund ,André, Bohlin ,Inka, Nyström ,Kenneth, Nilsson ,Mats, & and Olsson, H. (2021). Updating of forest stand data by using recent digital photogrammetry in combination with older airborne laser scanning data. Scandinavian Journal of Forest Research, 36(5), 401–407. https://doi.org/10.1080/02827581.2021.1936153.
Liu, W., Gardoni, P., Li, Z., Królczyk, G. M., Du, H., Li, W., & Sotelo, M. A. (2022). Multiple Natural Features Fusion for On-Site Calibration of LiDAR Boresight Angle Misalignment. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–14. https://doi.org/10.1109/TGRS.2022.3218564.
Liu, X., Huang, Y., Xu, X., Li, X., Li, X., Ciais, P., Lin, P., Gong, K., Ziegler, A. D., Chen, A., Gong, P., Chen, J., Hu, G., Chen, Y., Wang, S., Wu, Q., Huang, K., Estes, L., & Zeng, Z. (2020). High-spatiotemporal-resolution mapping of global urban change from 1985 to 2015. Nature Sustainability, 3(7), 564–570. https://doi.org/10.1038/s41893-020-0521-x.
Liu, X., Li, Q., Xu, Y., & Wei, X. (2022). Point Cloud Intensity Correction for 2D LiDAR Mobile Laser Scanning. Wireless Communications and Mobile Computing, 2022(1), 3707985. https://doi.org/10.1155/2022/3707985.
Luhmann, T., Robson, S., Kyle, S., & Böhm, J. (2023). Close-Range Photogrammetry and 3D Imaging (4th edition). De Gruyter.
Ma, X., Zheng, G., Chi, X., Yang, L., Geng, Q., Li, J., & Qiao, Y. (2023). Mapping fine-scale building heights in urban agglomeration with spaceborne lidar. Remote Sensing of Environment, 285, 113392. https://doi.org/10.1016/j.rse.2022.113392.
Madimarova, G., Nurpeissova, T., Ormambekova, A., Suleimenova, D., & Zhildikbayeva, A. (2024). Advanced topographic-geodetic surveys and GNSS methodologies in urban planning. Journal of Applied Geodesy, 18(3), 449–462. https://doi.org/10.1515/jag-2023-0088.
Mathews, A. J., & Nghiem, S. V. (2021). Examining Urban Built-up Volume. Dalam Urban Remote Sensing (hlm. 17–45). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119625865.ch2.
McDermott, M., & Rife, J. (2024). Correcting Motion Distortion for LIDAR Scan-to-Map Registration. IEEE Robotics and Automation Letters, 9(2), 1516–1523. https://doi.org/10.1109/LRA.2023.3346757.
Münzinger, M., Prechtel, N., & Behnisch, M. (2022). Mapping the urban forest in detail: From LiDAR point clouds to 3D tree models. Urban Forestry & Urban Greening, 74, 127637. https://doi.org/10.1016/j.ufug.2022.127637.
Nadzir, Z. A. (2024). Studi Komparasi Untuk As-Built Survey Dan Pengawasan Deformasi Dari Gedung: Metode Terestris Vs Metode Satelit Di Gedung Kuliah Umum (Gku) Institut Teknologi Sumatera. Journal of Science and Applicative Technology, 8(1), 65-72. https://doi.org/10.35472/jsat.v8i1.1635.
Nadzir, Z. A., & Adil, I. (2024). Assessment of Low-Cost Tide Gauges to Meet GLOSS 1-cm Precision and Accuracy Standards: A Case Study on Pramuka Island, Indonesia. Forum Geografi, 38(2), 222–230. https://doi.org/10.23917/forgeo.v38i2.5182.
Nadzir, Z. A., Simarmata, N., & Aliffia, A. (2020). Pengembangan Algoritma Identifikasi Sawah Padi Berdasarkan Spektra Fase Padi (Studi Kasus: Lampung Selatan) (Paddy Field Identification Algorithm Development Using Spectral Value Of Paddy Field (Case Study: South Lampung)). JURNAL SAINS INFORMASI GEOGRAFIS, 3(1), 23. https://doi.org/10.31314/jsig.v3i1.537.
Okolie, C. J., & Smit, J. L. (2022). A systematic review and meta-analysis of Digital elevation model (DEM) fusion: Pre-processing, methods and applications. ISPRS Journal of Photogrammetry and Remote Sensing, 188, 1–29. https://doi.org/10.1016/j.isprsjprs.2022.03.016.
Oniga, V.-E., Loghin, A.-M., Macovei, M., Lazar, A.-A., Boroianu, B., & Sestras, P. (2024). Enhancing LiDAR-UAS Derived Digital Terrain Models with Hierarchic Robust and Volume-Based Filtering Approaches for Precision Topographic Mapping. Remote Sensing, 16(1), 1-33. https://doi.org/10.3390/rs16010078.
Pemerintah Pusat Indonesia. (2021, Februari 2). Peraturan Pemerintah (PP) Nomor 45 Tahun 2021 tentang Penyelenggaraan Informasi Geospasial. https://peraturan.bpk.go.id/Details/161966/pp-no-45-tahun-2021.
Pöppl, F., Mandlburger, G., & Pfeifer, N. (2023). Evaluation Of A Gnss/Imu/Lidar-Integration For Airborne Laser Scanning Using Rtklib Ppk And Ppp Gnss Solutions. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVIII-1-W3-2023, 161–166. 2nd GEOBENCH Workshop on Evaluation and BENCHmarking of Sensors, Systems and GEOspatial Data in Photogrammetry and Remote Sensing - 23–24 October 2023, Krakow, Poland. https://doi.org/10.5194/isprs-archives-XLVIII-1-W3-2023-161-2023.
Prasvita, D. S., Santoni, M. M., Wirawan, R., & Trihastuti, N. (2021). Klasifikasi Pohon Kelapa Sawit Pada Data Fusi Citra Lidar Dan Foto Udara Menggunakan Convolutional Neural Network. JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), 6(2), Article 2. https://doi.org/10.29100/jipi.v6i2.2437.
Pronk, M., Eleveld, M., & Ledoux, H. (2024). Assessing Vertical Accuracy and Spatial Coverage of ICESat-2 and GEDI Spaceborne Lidar for Creating Global Terrain Models. Remote Sensing, 16(13), Article 13. https://doi.org/10.3390/rs16132259.
Räty, J., Hauglin, M., Astrup, R., & Breidenbach, J. (2023). Assessing and mitigating systematic errors in forest attribute maps utilizing harvester and airborne laser scanning data. Canadian Journal of Forest Research, 53(4), 284–301. https://doi.org/10.1139/cjfr-2022-0053.
Richardson, J. J., & Moskal, L. M. (2011). Strengths and limitations of assessing forest density and spatial configuration with aerial LiDAR. Remote Sensing of Environment, 115(10), 2640–2651. https://doi.org/10.1016/j.rse.2011.05.020.
Salehi-Dorcheabedi, M., Asgari, J., Amiri-Simkooei, A., & Fatemi Nasrabadi, S. B. (2024). Improving LiDAR height precision in urban environment: Low-cost GNSS ranging prototype for post-mission airborne laser scanning enhancement. Remote Sensing Applications: Society and Environment, 35, 101251. https://doi.org/10.1016/j.rsase.2024.101251.
Sharifisoraki, Z., Dey, A., Selzler, R., Amini, M., Green, J. R., Rajan, S., & Kwamena, F. A. (2023). Monitoring Critical Infrastructure Using 3D LiDAR Point Clouds. IEEE Access, 11, 314–336. https://doi.org/10.1109/ACCESS.2022.3232338.
Singh, S., Sharma, S. K., & Shukla, A. K. (2024). The Role of Geospatial Technology in Sustainable Development. Dalam C. Sharma, A. K. Shukla, S. Pathak, & V. P. Singh (Ed.), Sustainable Development and Geospatial Technology: Volume 1: Foundations and Innovations (hlm. 17–31). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-65683-5_2.
Skondras, A., Karachaliou, E., Tavantzis, I., Tokas, N., Valari, E., Skalidi, I., Bouvet, G. A., & Stylianidis, E. (2022). UAV Mapping and 3D Modeling as a Tool for Promotion and Management of the Urban Space. Drones, 6(5), Article 5. https://doi.org/10.3390/drones6050115.
Sulastri, S., Syafri, S., & Latief, R. (2024). Pemanfaatan Peta Foto Tegak Sebagai Peta Dasar Untuk Evaluasi Pelaksanaan Rencana Tata Ruang. Urban and Regional Studies Journal, 7(1), Article 1. https://doi.org/10.35965/ursj.v7i1.5272.
Van Genderen, J. L. (2011). Airborne and terrestrial laser scanning. International Journal of Digital Earth, 4(2), 183–184. https://doi.org/10.1080/17538947.2011.553487.
Veronese, L. de P., Auat-Cheein, F., Mutz, F., Oliveira-Santos, T., Guivant, J. E., De Aguiar, E., Badue, C., & De Souza, A. F. (2021). Evaluating the Limits of a LiDAR for an Autonomous Driving Localization. IEEE Transactions on Intelligent Transportation Systems, 22(3), 1449–1458. https://doi.org/10.1109/TITS.2020.2971054.
Vo, A. V., Laefer, D. F., & Byrne, J. (2021). Optimizing Urban LiDAR Flight Path Planning Using a Genetic Algorithm and a Dual Parallel Computing Framework. Remote Sensing, 13(21), Article 21. https://doi.org/10.3390/rs13214437.
Wang, A., Shi, S., Man, W., & Qu, F. (2024). Enhanced Land-Cover Classification through a Multi-Stage Classification Strategy Integrating LiDAR and SIF Data. Remote Sensing, 16(11), Article 11. https://doi.org/10.3390/rs16111916.
Wieland, M., Martinis, S., Kiefl, R., & Gstaiger, V. (2023). Semantic segmentation of water bodies in very high-resolution satellite and aerial images. Remote Sensing of Environment, 287, 113452. https://doi.org/10.1016/j.rse.2023.113452.
Yu, Z., Qiao, Z., Liu, W., Yin, H., & Shen, S. (2025). SLIM: Scalable and Lightweight LiDAR Mapping in Urban Environments. IEEE Transactions on Robotics, 1–20. https://doi.org/10.1109/TRO.2025.3554400.
Zhong, Y., Yan, B., Yi, J., Yang, R., Xu, M., Su, Y., Zheng, Z., & Zhang, L. (2023). Global urban high-resolution land-use mapping: From benchmarks to multi-megacity applications. Remote Sensing of Environment, 298, 113758. https://doi.org/10.1016/j.rse.2023.113758.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Zulfikar Adlan Nadzir

This work is licensed under a Creative Commons Attribution 4.0 International License.