Study of Laterite Iron Ore Extraction by Smelting Method using Electric Arc Furnace

Authors

  • Luluk Nofitasari Wijayanti Universitas Pembangunan Nasional Veteran Yogyakarta
  • Aura Shafa Choirunnisa Universitas Pembangunan Nasional Veteran Yogyakarta
  • Matrix Faqih Azizi Universitas Pembangunan Nasional Veteran Yogyakarta

DOI:

https://doi.org/10.31315/jmept.v5i2.13955

Keywords:

BCI Semi Coke, Electric Arc Furnace, Laterite Iron Ore, Lime

Abstract

Laterite iron ore resources have enormous potential. Laterite iron ore is the main material for iron and steel production in Indonesia, with reserves estimated at 1,391 million MT and Fe content between 40% and 56%. The processing and extraction of laterite iron ore carried out in this study used the Electric Arc Furnace (EAF) method. The processing process includes the stages of drying, crushing, mixing (two-stage mixing), sintering, reheating, and smelting. In the sintering and smelting processes, BCI semi coke is used as a reductant and energy source. While lime is used to help bind impurity minerals into slag. The selection of the EAF method is based on its advantages in energy efficiency and the ability to use more diverse raw materials. EAF can also produce high-quality products and has better environmental control than technologies such as blast furnaces. The variation in the composition of BCI semi coke and lime used in this experiment affects the final Fe content in the pig iron produced. The right process and using the appropriate material composition, pig iron with high Fe content can be obtained. The highest Fe content in the research conducted was 94.43%.

 

Author Biographies

Luluk Nofitasari Wijayanti, Universitas Pembangunan Nasional Veteran Yogyakarta

-

Aura Shafa Choirunnisa, Universitas Pembangunan Nasional Veteran Yogyakarta

-

Matrix Faqih Azizi, Universitas Pembangunan Nasional Veteran Yogyakarta

-

References

Abd Halim, M. H., Mokhtar, N. A. M., Masnan, S. S. K., Talib, N. K., Jusoh, A. F., & Saidin, M. (2023). X-Ray Fluorescence (XRF) analysis of iron ore at ancient Kedah iron smelting site, Sungai Batu archaeological complex, Bujang Valley, Kedah, Malaysia. Heliyon, 9(4). https://doi.org/10.1016/j.heliyon.2023.e14850

Agung, L. N. (2014). Potensi Nilai Tambah Mineral Ikutan Pada Wilayah Bekas Tambang Bijih Besi Laterit Di Kecamatan Mantewe Dan Kecamatan Simpang Empat, Kabupaten Tanah Bumbu, Provinsi Kalimantan Selatan. Buletin Sumber Daya Geologi, 9(3), 44–55. https://doi.org/10.47599/bsdg.v9i3.132

Ahmed, H. M., Viswanathan, N., & Bjorkman, B. (2014). Composite pellets-a potential raw material for iron-making. In Steel Research International (Vol. 85, Issue 3, pp. 293–306). https://doi.org/10.1002/srin.201300072

Bahfie, F., Manaf, A., Astuti, W., Nurjaman, F., & Herlina, U. (2021). Tinjauan teknologi proses ekstraksi bijih nikel laterit. Jurnal Teknologi Mineral Dan Batubara, 17(3), 135–152. https://doi.org/10.30556/jtmb.Vol17.No3.2021.1156

Casagrande, C., Alvarenga, T., & Pessanha, S. (2017). Study of Iron Ore Mixtures Behavior in the Grinding Pelletizing Process. In Mineral Processing and Extractive Metallurgy Review (Vol. 38, Issue 1, pp. 30–35). Taylor and Francis Inc. https://doi.org/10.1080/08827508.2016.1244058

Cavaliere, P. (2019). Clean Ironmaking and Steelmaking Processes: Efficient Technologies for Greenhouse Emissions Abatement. In Clean Ironmaking and Steelmaking Processes (pp. 1–37). Springer International Publishing. https://doi.org/10.1007/978-3-030-21209-4_1

Evans, A. M. (1993). Ore Geology Industrial Minerals: An Introduction (Third). Blackwell Publishing.

Fernández-González, D., Ruiz-Bustinza, I., Mochón, J., González-Gasca, C., & Verdeja, L. F. (2017a). Iron Ore Sintering: Process. In Mineral Processing and Extractive Metallurgy Review (Vol. 38, Issue 4, pp. 215–227). Taylor and Francis Inc. https://doi.org/10.1080/08827508.2017.1288115

Fernández-González, D., Ruiz-Bustinza, I., Mochón, J., González-Gasca, C., & Verdeja, L. F. (2017b). Iron Ore Sintering: Raw Materials and Granulation. In Mineral Processing and Extractive Metallurgy Review (Vol. 38, Issue 1, pp. 36–46). Taylor and Francis Inc. https://doi.org/10.1080/08827508.2016.1244059

Ghosh, Ahindra, Chatterjee, & Amit. (2008). Iron Making and Steelmaking : Theory And Practice (Second). PHI Learning Private Limited.

Gupta, S., French, D., Sakurovs, R., Grigore, M., Sun, H., Cham, T., Hilding, T., Hallin, M., Lindblom, B., & Sahajwalla, V. (2008). Minerals and iron-making reactions in blast furnaces. In Progress in Energy and Combustion Science (Vol. 34, Issue 2, pp. 155–197). https://doi.org/10.1016/j.pecs.2007.04.001

König, U., Norberg, N., & Gobbo, L. (2017). FROM IRON ORE TO IRON SINTER – PROCESS CONTROL USING X-RAY DIFFRACTION (XRD). 146–153. https://doi.org/10.5151/2594-357x-26276

Kovačič, M., Stopar, K., Vertnik, R., & Šarler, B. (2019). Comprehensive electric arc furnace electric energy consumption modeling: A pilot study. Energies, 12(11). https://doi.org/10.3390/en12112142

Liang, Z., Yi, L., Huang, Z., Lu, B., Jiang, X., Cai, W., Tian, B., & Jin, Y. (2019). Insight of iron ore-coal composite reduction in a pilot scale rotary kiln: A post-mortem study. Powder Technology, 356, 691–701. https://doi.org/10.1016/j.powtec.2019.08.086

Liu, H., Qian, W., Chen, J., Chen, H., Chastain, M. L., & Notis, M. R. (2017). Cast iron-smelting furnace materials in imperial China: Macro-observation and microscopic study. Journal of Archaeological Science, 86, 50–59. https://doi.org/10.1016/j.jas.2017.09.003

Mohanty, D., Chandra, A., & Chakraborti, N. (2009). Genetic algorithms based multi-objective optimization of an iron making rotary kiln. Computational Materials Science, 45(1), 181–188. https://doi.org/10.1016/j.commatsci.2008.03.056

Nurhakim, Dwiatmoko, M. U., NH, R., & M., A. (2011). Identifikasi Potensi Endapan Bijih Besi Laterit Di Bagian Tengah Pulau Sebuku, Provinsi Kalimantan Selatan. Info Teknik, 12(2), 48–53. https://doi.org/http://dx.doi.org/10.20527/infotek.v12i2.1806.g1578

Pardiarto, B., & Wahyu Widodo. (2024). Keterdapatan Dan Genesa Cebakan Bijih Besi Daerah Kapayang, Kabupaten Tanah Bumbu, Kalimantan Selatan. Buletin Sumber Daya Geologi, 19(1), 11–25. https://doi.org/10.47599/bsdg.v19i1.471

Saboohi, Y., Fathi, A., Skrjanc, I., & Logar, V. (2019). Optimization of the electric arc furnace process. IEEE Transactions on Industrial Electronics, 66(10), 8030–8039. https://doi.org/10.1109/TIE.2018.2883247

Sunarya, W. (2017). IDENTIFIKASI BIJIH BESI (Fe) MENGGUNAKAN METODA GEOLISTRIK RESISTIVITAS KONFIGURASI WENNER-SCHLUMBERGER DI KABUPATEN LUWU. Jurnal Geocelebes, 1(2), 72–81.

Syguła, E., Rasaq, W. A., & Świechowski, K. (2023). Effects of Iron, Lime, and Porous Ceramic Powder Additives on Methane Production from Brewer’s Spent Grain in the Anaerobic Digestion Process. Materials, 16(15). https://doi.org/10.3390/ma16155245

Tyassena, F. Y. P., Agus, T. G., Nur, M. A., Prameswara, G., & Amin, I. (2022). Perbandingan Batubara Dan CaSO4 Sebagai Reduktor Dalam Proses Reduksi Bijih Nikel Laterit. JURNAL TEKNOLOGI KIMIA MINERAL, 1(1), 31–35. https://doi.org/10.61844/jtkm.v1i1.25

Yin, Z., Wang, N., & Li, T. (2024). Study on single particle compression crushing characteristics of iron ore with five different particle sizes. AIP Advances, 14(10). https://doi.org/10.1063/5.0229821

Zhou, S., Yuan, Z., Cheng, Q., Weindorf, D. C., Zhang, Z., Yang, J., Zhang, X., Chen, G., & Xie, S. (2020). Quantitative Analysis of Iron and Silicon Concentrations in Iron Ore Concentrate Using Portable X-ray Fluorescence (XRF). Applied Spectroscopy, 74(1), 55–62. https://doi.org/10.1177/0003702819871627

TEKNIK, Volume 12 No. 2.

Downloads

Published

2025-02-20

Issue

Section

Articles