Catalytic Pyrolysis of Corn Cob Using Fe-Ni/Char Catalyst
Keywords:
catalytic pyrolisis, TGAl Fe-Ni/Char catalyst, bio-oilAbstract
There is a growing interest to convert biomass waste such as corn cob to biofuel. Thermal conversion such as pyrolisis may play an important role to produce bio-oil. The objective of this research was to develop a kinetic study of catalytic pyrolysis of corn cob over Fe-Ni/Char catalyst using Thermogravimetric Analysis (TGA). The solid catalyst was prepared by impregnation method. The ratio of the percentages of Fe and Ni metals in the X-Ray Fluorescence (XRF) analysis of the catalyst was close to 1:1, resulting in metal loading values of 2.5% (1.062% and 1.013%), 5% (2.291% and 2.794%), and 10% (4.947% and 5.417%) for the catalyst. The pyrolysis experiments were performed using various catalyst loadings of 0, 2.5, 5, and 10%. In addition, the present study also investigated the influence of heating rates of 5, 10, and 20 K min-1. Two isoconversion models, Kissinger-Akahira-Sunose (KAS) and Ozawa-Flynn-Wall (OFW) were utilized to determine the activation energies. The activation energies calculated using the KAS and OFW models revealed a consistent trend, with values of activation energy of corn cob pyrolysis around 124 - 303 kJ/mol and 133 - 313 kJ/mol, respectively.
References
Arenas Castiblanco, E., Montoya, J. H., Rincón, G. V., Zapata-Benabithe, Z., Gómez-Vásquez, R., & Camargo-Trillos, D. A. (2022). A new approach to obtain kinetic parameters of corn cob pyrolysis catalyzed with CaO and CaCO3. Heliyon, 8(8). https://doi.org/10.1016/j.heliyon.2022.e10195
Barontini, F., Biagini, E., Bonini, F., & Tognotti, L. (2015). An experimental investigation on the devolatilization behaviour of raw and torrefied lignocellulosic biofuels. Chemical Engineering Transactions, 43, 481–486. https://doi.org/10.3303/CET1543081
Bridgwater, A. V. (2012). Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy, 38, 68–94. https://doi.org/10.1016/j.biombioe.2011.01.048
Escalante, J., Chen, W. H., Tabatabaei, M., Hoang, A. T., Kwon, E. E., Andrew Lin, K. Y., & Saravanakumar, A. (2022). Pyrolysis of lignocellulosic, algal, plastic, and other biomass wastes for biofuel production and circular bioeconomy: A review of thermogravimetric analysis (TGA) approach. Renewable and Sustainable Energy Reviews, 169(May), 112914. https://doi.org/10.1016/j.rser.2022.112914
Gai, C., Dong, Y., & Zhang, T. (2013). The kinetic analysis of the pyrolysis of agricultural residue under non-isothermal conditions. Bioresource Technology, 127, 298–305. https://doi.org/10.1016/j.biortech.2012.09.089
Giudicianni, P., Cardone, G., & Ragucci, R. (2013). Cellulose, hemicellulose and lignin slow steam pyrolysis: Thermal decomposition of biomass components mixtures. Journal of Analytical and Applied Pyrolysis, 100, 213–222. https://doi.org/10.1016/j.jaap.2012.12.026
Hu, M., Cui, B., Xiao, B., Luo, S., & Guo, D. (2020). Insight into the ex situ catalytic pyrolysis of biomass over char supported metals catalyst: Syngas production and tar decomposition. Nanomaterials, 10(7), 1–14. https://doi.org/10.3390/nano10071397
Kaur, R., Gera, P., Jha, M. K., & Bhaskar, T. (2018). Pyrolysis kinetics and thermodynamic parameters of castor (Ricinus communis) residue using thermogravimetric analysis. Bioresource Technology, 250, 422–428. https://doi.org/10.1016/j.biortech.2017.11.077
Kim, Y.-M., Rhee, G. H., Ko, C. H., Kim, K. H., Jung, K. Y., Kim, J. M., & Park, Y.-K. (2018). Catalytic Pyrolysis of Pinus densiflora Over Mesoporous Al 2 O 3 Catalysts . Journal of Nanoscience and Nanotechnology, 18(9), 6300–6303. https://doi.org/10.1166/jnn.2018.15653
Liang, S., Guo, F., Du, S., Tian, B., Dong, Y., Jia, X., & Qian, L. (2020). Synthesis of Sargassum char-supported Ni-Fe nanoparticles and its application in tar cracking during biomass pyrolysis. Fuel, 275(January), 117923. https://doi.org/10.1016/j.fuel.2020.117923
Lim, J. S., Abdul Manan, Z., Wan Alwi, S. R., & Hashim, H. (2012). A review on utilisation of biomass from rice industry as a source of renewable energy. Renewable and Sustainable Energy Reviews, 16(5), 3084–3094. https://doi.org/10.1016/j.rser.2012.02.051
Liu, X., Xia, W., Jiang, Q., Xu, Y., & Yu, P. (2014). Synthesis, characterization, and antimicrobial activity of kojic acid grafted chitosan oligosaccharide. Journal of Agricultural and Food Chemistry, 62(1), 297–303. https://doi.org/10.1021/jf404026f
Minh Loy, A. C., Yusup, S., Fui Chin, B. L., Wai Gan, D. K., Shahbaz, M., Acda, M. N., Unrean, P., & Rianawati, E. (2018). Comparative study of in-situ catalytic pyrolysis of rice husk for syngas production: Kinetics modelling and product gas analysis. Journal of Cleaner Production, 197, 1231–1243. https://doi.org/10.1016/j.jclepro.2018.06.245
Mishra, R. K., & Mohanty, K. (2018). Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis. Bioresource Technology, 251, 63–74. https://doi.org/10.1016/j.biortech.2017.12.029
Sarkar, J. K., & Wang, Q. (2020). Characterization of pyrolysis products and kinetic analysis of waste jute stick biomass. Processes, 8(7). https://doi.org/10.3390/pr8070837
Shariff, A., Aziz, N. S. M., Ismail, N. I., & Abdullah, N. (2016). Corn cob as a potential feedstock for slow pyrolysis of biomass. Journal of Physical Science, 27(2), 123–137. https://doi.org/10.21315/jps2016.27.2.9
Tripathi, M., Sahu, J. N., & Ganesan, P. (2016). Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renewable and Sustainable Energy Reviews, 55, 467–481. https://doi.org/10.1016/j.rser.2015.10.122
Wang, Y. J., Kang, K., Yao, Z. L., Sun, G. T., Qiu, L., Zhao, L. X., & Wang, G. (2018). Effects of different heating patterns on the decomposition behavior of white pine wood during slow pyrolysis. International Journal of Agricultural and Biological Engineering, 11(5), 218–223. https://doi.org/10.25165/j.ijabe.20181105.3156
Xing, R., Guo, J., Miao, C., Liu, S., & Pan, H. (2014). Fabrication of protein-coated CdS nanocrystals via microwave-assisted hydrothermal method. Journal of Experimental Nanoscience, 9(6), 582–587. https://doi.org/10.1080/17458080.2012.678891
Xu, L., Zhang, J., Ding, J., Liu, T., Shi, G., Li, X., Dang, W., Cheng, Y., & Guo, R. (2020). Pore structure and fractal characteristics of different shale lithofacies in the dalong formation in the western area of the lower yangtze platform. Minerals, 10(1). https://doi.org/10.3390/min10010072
Yang, H., Yan, R., Chen, H., Lee, D. H., & Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86(12–13), 1781–1788. https://doi.org/10.1016/j.fuel.2006.12.013
Downloads
Published
Issue
Section
License
Syarat yang harus dipenuhi oleh Penulis sebagai berikut:- Penulis menyimpan hak cipta dan memberikan jurnal hak penerbitan pertama naskah secara simultan dengan lisensi di bawah Creative Commons Attribution License yang mengizinkan orang lain untuk berbagi pekerjaan dengan sebuah pernyataan kepenulisan pekerjaan dan penerbitan awal di jurnal ini.
- Penulis bisa memasukkan ke dalam penyusunan kontraktual tambahan terpisah untuk distribusi non ekslusif versi kaya terbitan jurnal (contoh: mempostingnya ke repositori institusional atau menerbitkannya dalam sebuah buku), dengan pengakuan penerbitan awalnya di jurnal ini.
- Penulis diizinkan dan didorong untuk mem-posting karya mereka online (contoh: di repositori institusional atau di website mereka) sebelum dan selama proses penyerahan, karena dapat mengarahkan ke pertukaran produktif, seperti halnya sitiran yang lebih awal dan lebih hebat dari karya yang diterbitkan. (Lihat Efek Akses Terbuka).