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Abstract — Rock physics modelling is commonly applied to characterize the subsurface. Sonic log provides the
elastic properties in advanced petrophysics modelling or rock physics modelling. Although it is very important,
to obtain shear sonic measurement results is very expensive. Therefore, empirical and artificial intelligence
allow some solutions to estimate synthetic shear sonic log. This study applicate PCA as feature selection and
SVM as the regressor with TAF as the target interval for well NEGF1P. The results of feature selection are GR,
DTC, and MSF log as selected features. GS optimizes the SVM kernel parameter using selected features. The
best parameters for each kernel (linear and rbf) and selected feature are the input to estimate synthetic shear
sonic log. The estimation result using linear kernel has R? 0.845 and root mean square error (RMSE) 15.132 and
using rbf kernel has R? 0.886 and RMSE 12.989. The estimation results construe that rbf kernel estimates the
synthetic sonic log with more precision than the linear kernel and indicates the linear relation between the
estimated and origin log. The three other wells apply SMV with rbf kernel best parameters and selected features
to estimation the synthetic shear sonic in similar interval and younger interval (GUF).
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INTRODUCTION

Rock physics modelling is the approach to characterize the subsurface condition. It affects to the exploration and
production aspect (Kim, 2022; Maleki et al., 2014). In this modelling, several elastic rock properties can be
generated according to data availability. Rock physics modelling can distribute elastic properties representing
the lithology or fluid content using petrophysical properties. In other words, petrophysics is an essential property
in modelling rock physics.

Core, log, and seismic data are required to model rock physics or petrophysics. Core data provide elastic
properties using direct measurement. The measurement is carried out on a rock sample. This measurement needs
a lot of time due to step by step procedure for generating rock properties. The result of this measurement is
discrete data depending on the number of rock samples (Kim, 2022). It’s different from core data, logging is the
indirect method that measures the rock properties vertically. Nevertheless, in deviated well, the log data has a
lateral resolution. This method is more efficient compared to coring data. This method provides high-resolution
data vertically in the depth domain. This method must be performed in different well locations to cover lateral
distribution (Kim, 2022). Another indirect measurement is seismic acquisition. The seismic data is preferable in
lateral coverage but vertically has a lower frequency compared to log data.

The standard log tools measure natural gamma radiation, formation density, resistivities in different
penetrations, and neutron porosity. These log data provide petrophysics and lithology information (Kim, 2022).
In addition, acoustic logging measures compressional sonic log. This log data provides the elastic properties in
advanced petrophysics modelling or rock physics modelling. The measurement of compressional sonic utilize
monopole logging tool. This tool has limitations in measuring shear sonic. Therefore, the dipole logging tool is
used to acquire shear sonic and compression sonic simultaneously. This measuring principle is the reason that
dipole logging tool is the more expensive cost compared to monopole logging tool. As a consequences, the shear
sonic log is more limited available compared to the compressional sonic log (Kim, 2022).

Referring to this limited log data, several approaches have been developed. Empirical rock physics models are
the approach to model missing elastic data (Rohaman, 2017). These models are generally based on calibration
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coefficients and less geological consistent parameters (Greenberg and Castagna, 1992). The other models, such
as theoretical and heuristic models, use continuum mechanics-based approximations of the relationship between
elastic and poroelastic properties of rocks (Avseth et al., 2005). The general challenge in the empirical model is
model fitting. The assumptions in model fitting are generally not the universal model that fit all rock type so the
parameters have to be calibrated by the available data set. This complexity issue non-uniqueness solution of the
model using that approach (Lorentzen et al., 2022). Therefore, in the last two decades, artificial intelligence,
especially machine learning is employed to predict missing log. This approach is increasingly developed in so
many aspects of industries, not only in oil and gas industry. In 2014, Maleki et al. used supervised machine
learning Support Vector Regressor (SVR) and Back-Propagate Neural Network (BPNN) to predict shear wave
velocity. In 2021, Lorentzen et al. performed Linear Regressor (LR), Random Forest Regressor (RFR), SVR and
Artificial Neural Network (ANN) to estimate shear sonic log in heterogeneous and fractured Lower Cretaceous
of the Danish North Sea. In 2021, Mordekhai et al. apply the parametric and non-parametric regression to
predict the missing log data using Principal Component Analysis (PCA) for feature selection and using LR,
Support Vector Machine (SVM), and Gaussian Process Regression (GPR) to estimate missing log data. In 2022,
Kim J. utilized hybrid machine learning to generate a sonic log synthetic. The approach combines unsupervised
machine learning for data clustering and Particle Swarm Optimation (PSO) to determine hyperparameters.

The focused area of the study is Jambi Sub Basin, South Sumatera Basin, and located on west Bukit Barisan
Mountain. South Sumatera Basin is categorized into four sub-basin, South Palembang, North Palembang,
Central Palembang, and Jambi Sub-Basin. South Sumatera Basin is a back-arc basin formed in range Pre-
Tertiary to Early Tertiary. Extensional back-arc stresses along the subduction zone in the Early Tertiary
produced a series of grabens across Sumatra and Java and extended onto the adjacent Sunda Shelf to the north.
The subduction zone was formed when the oceanic crush of the Indian Ocean was subducted northward under
Sundaland Craton (Sutjiningsih et al., 2007).

The target of this study is Talang Akar Formation (TAF) and Gumai Formation (GUF). TAF is believed to be
the dominant source of commercial hydrocarbons in the South Sumatra Basin (Ginger and Fielding, 2005). TAF
is classified into two sub-formations, Lower Talang Akar (LTAF) and Upper Talang Akar (UTAF). The
deposition of LTAF involves a transgressive cycle, which commenced in Late Oligocene. The deposition is syn-
rift transgressive fluvio-deltaic. LTAF filled in the half-graben and occasionally deposited in the basement high.
The other interval, UTAF deposition is deltaic to marine sedimentation. It consists of interbedded sandstone,
shale and coals eventually accompanied by carbonates streaks (Sutjiningsih et al., 2007).

The sedimentary succession of GUF Formation comprises transgressive cycle, which commenced in Early
Miocene. Marine conditions were eventually established during the continuing transgression sequence with
deposition of an open marine facies in the Gumai Formation, which consists of marine shales, claystones, marls,
and fine to moderate grained thick sandstones with moderate to good porosity and permeability (Sutjiningsih et
al., 2007).

Maman Rohaman, Ignatius Sonny Winardhi, Yody Rizkianto 30



Jurnal llmiah MTG Volume 13 No. 3, Desember 2022 ISSN 1979-0090

STRATIGRAPHY FORMATION LITHOLOGY PALAEONTOLOGY EXAMPLE FIELDS
=] wver ] troon
g e ALLUVIUM ves =
2| WraTochw
2 N PN
B ST U T S e °
w WWW\\/‘N\MJ\/ —~—~ N 2 [ o
- MUARA ENIM —— ROCUX wir | nue Tanpurg Loata
- o =

AIR BENAKAT Pukuef] . Gorngsi o

g Y
e
we * o
e
e 2
= w

........

MIDOLE

MIOCENE

POST - RIFT

GUMA!

EARLY

e » .
BATU RAJA %1 Musd Singe, P Rassba. Kak
| o . Harkmeu Surmoga, Jome
M| s * e
—_— W Lombot  Tutumg Aar
TALANG AKAR i Guneng Kemals  Pandope,
2 =3 L NE s, Lisau, Banokat
»o - OLUGOCENE | _ | P Gamo, Getams N, Batora
E [ = *® .
& EMAT 3 3 | reymgrions Apa
z | z z Hart
% EOCENE ] i &
LAMAT B lg
F— 2 2
Py N
ALEOCENE sw NE

P

i

PRE- BASEMENT
TERTIARY

PRE
RIFT

nacbleicong|

o g D81 535 7, QT A~
f o ¢ [T 1 Lo hy—
v 1 Al e e e N an T
| - gy Ty e oo e e IS Bt
L . | i1 Socager areng;

Figure 1. Chronostratigraphic Scheme for South Sumatera Basin
Source: Ginger and Fielding, 2005

METHODS

The objective of the study is to estimate synthetic shear sonic log. That log can be estimated using several
wireline logs. Four wells have the available wireline log data, NEGF1P, NEGF2P, NEGF3PU, and NEGF4PU.
The DTS log in Well NEGF4PU is available, so this well is the object to train the regression and the validation.
The best parameter in that experiment will be applied to the other well in which the DTS log is unavailable.
Table 1 informs the log data availability for each well specifically.

Table 1. Well Log Data Availability

WellName CALI GR RHOB DTC RT DTS CNL MSF PEF
NEGF1P N N N N N N N N
NEGF2P N \ \ \ \/ \ \ \/

NEGF3PU v v v v v v v v

NEGF4PU N N N \ v \ N N v

Principal Component Analysis

Before estimating the synthetic sonic log, the prior step is to determine the input data/features used in the
prediction. The method for feature selection is Principal Component Analysis (PCA). PCA is made up of a
linear transformation of m original variables into new variables (components) where each new component is a
linear combination of the original m variables (Davis, 2006; Flood et al., 2015). PCA is performed in a manner
in which the total variance of the dataset is accounted for by each successive new component (Flood et al.,
2015). Figure 2 represents two variables plotted on a 2D axis. Then, these variables are transformed into two
principal components. In the component axis, the observation data can be classified clearly.
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Figure 2. Plot 50 observation of variable x; and x, (left) and plot Plot 50 observation of variable x; and x, with
respect to their principal component z; and z; (right).
Source: Jolliffe, 2002

Support Vector Machine

The method for DTS estimation is SVM with various kernels (linear and radial basis function). Equation 3 is the
linear kernel function, and Equation 4 is rbf kernel function (Kecman, 2005). SVM classifies the data using a
decision boundary commonly called hyperplane. Equation 1 shows the discriminant or decision function.
Where x is the feature vector with n numbers, w is the weight of each feature, and b is a bias. Figure 3
illustrates the hyperplane of two classes of data. SVM determines the hyperplane by considering the maximum
margin classifier. Equation 2 is the objective function to determine the maximum margin classifier (M)
(Kecman, 2005).
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Figure 3. The Decision Boundary of The Data
Source: (Kecman, 2005)

Grid Search

The parameters of SVM consisting of C and sigma are determined by the systematic search method. Grid Search
(GS) as the systematic search method is commonly defined as parameter optimization. This method performs to
a defined model consisting of several grids. The objective function values of each grid will be calculated and
used for considering the best solution of the model. The best solution of this model is grid value with minimum
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objective values (Grandis, 2009). The workflow for parameter optimization follows the Figure 4.
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Figure 4. SVM Parameter Optimization using Grid Search.
Source: Syarif, 2016; Mordekhai et al., 2021

Cross Validation

K-Fold is one of the algorithms to cross-validate the prediction results. This algorithm separates the dataset into
training and validation subset data. The combination of two subset data will be variated depending on the

number of folds. In this study, the number of folds is ten folds (Syarif, 2016).

RESULTS AND DISCUSSION

Feature selection is performed in Well NEGF4PU because this well has a DTS log as a data validator. Log
CALI, GR, RHOB, DTC, RT, CNL, MSF, and PEF called data features are the input data for feature selection
using PCA. PCA transforms the features into the principal component. This process calculates the variance of
each component. The value of variance represents discriminant abilities. PC1 and PC2 are the component results
of the feature selection process. Figure 5 informs us about the variance of the data for each principal
component. The explained value ratio of PC1 is 93.18 %, which indicates this component can discriminate the

data and has dominant contribution to it.
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Variance of Principal Components
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Explained variance ratio (%)

6.17

PC1 PC2
Principal component index

Figure 5. The Variance of the Principal Components

In the transformation of the input data into respective components, PCA calculates the eigenvalue and
eigenvector. Each well log as the feature has an eigenvector that contributes to PC1 as the main component.
Based on the information in Figure 6, GR has the biggest eigenvector compared to other logs. It represents the
log data has a dominant contribution for PC1. In spite of that result, DTC and MSF will be included in the
synthetic shear sonic log estimation process because it has enough contribution. According to that consideration,
the selected features are GR, DTC and MSF log.

Eigen Vectors

10 0.994

Absolute Eigen Vector

0.103

0,033
0,00 0.00: 0.004 0001 0.007
GR CALI RHOB DTC RT CNL MSF PEF
Log Data

Figure 6. The Eigen Vector of Well Log Data for PC1

Before estimating the synthetic sonic log, a searching parameter is performed to find the best kernel parameter
using Grid Search algorithm. The range models of C parameter and gamma, respectively, are 0.1 — 100 and
0.001 — 1. The input data in this process are selected features and DTS log as the target data. Table 2 shows the
best parameter for each kernel using Grid Search.

Table 2. Kernel Parameters

Type of Kernel C gamma
Linear 0.1 1
Gaussian rbf 100 0.001

SVM estimates the synthetic sonic log using the best kernel parameter and selected features. This estimation is
performed in Well NEGF4PU. The result of synthetic sonic log estimation is shown by Figure 7. This result
using linear kernel has R? 0.845 and root mean square error (RMSE) 15.132. This result using rbf kernel has R?
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0.886 and RMSE 12.989. Visually, Figure 7 shows the estimation result of synthetic shear sonic using linear
and rbf kernel compared to DTS log as origin data. Statistically, the estimation results construe that rbf kernel
estimates the synthetic sonic log with more precision than the linear kernel. Figure 7 indicates the linear
relationship between DTS log and the synthetic shear sonic log predicted by SVM using rbf kernel.

Furthermore, cross-validation is performed to validate the results. This validation uses using K-Fold algorithm.
The number of folds is conducted by ten folds. The results of cross-validation using linear kernel are RMSE
3.888 and R? 0.892. On the other hand, the results of cross-validation using rbf kernel are RMSE 3.809 and R?
0.841. The results indicate that the prediction using rbf kernel is more precise based on RSME value.

Table 3. Statistical Result of prediction and Validation

Prediction Cross-Validation
Type of Kernel
RMSE R? RMSE R?
Linear 15.132 0.845 3.888 0.892
Gaussian rbf 12.989 0.886 3.809 0.841

Based on the experiment on the Well NEGF4PU, the other wells apply SMV with rbf kernel best parameters and
selected features to estimation the synthetic shear sonic. The estimation will be performed in similar interval
formation and younger interval (GUF). GUF is the main target of these wells. Therefore, the analysis of
estimation results is focused on that interval. Synthetic shear sonic as the estimation result using SVM
contributes to rock properties transformation, such as Mu-Rho (MR). MR is a rock property that the product of
multiplication Lame constant Mu and density. Mu, defined as rigidity, represents rock properties related by
rigidity of lithology. In other words, this property can be used to delineate lithology. Compacted sandstone has
higher rigidity compared to shale or uncompacted sandstone (Rohaman, 2017).

Figure 8-10 inform the relation of rock properties in Well NEGF1P, NEGF2P, and NEGF4PU, respectively.
Crossplot RHOB-GR shows the lithology delineation based on the log data. While crossplot MR- RHOB shows
transformed properties indicating the lithology delineation and fluid content delineation. The crossplot MR-
RHOB represents that the trend of shale rigidity is to the left of the sandstone trend. Even though the lithologies
are not clearly separated, sandstone has higher rigidity compared to shale. In sandstone interval, that crossplot
can separate the fluid content that contain high or low water saturation values.
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Figure 7. Synthetic Shear Sonic compared to DTS Log.
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Figure 8. Rock Properties Relation of Well NEGF1P

Maman Rohaman, Ignatius Sonny Winardhi, Yody Rizkianto

36



Jurnal llmiah MTG

Volume 13 No. 3, Desember 2022

ELASTIC PROPERTIES RELATION OF WELL NEGF2P

ISSN 1979-0090

N
n

=
=}

110 .
241 0.8 100 4 . 0.8
2.3 907
% s 0.6 g g 50 . 0.6 E
B, £ % £
g & £ 70 &
2 04% 5 0.4 %
2.1 .
60 -
0.2 0.2
2.0 50
e
19 T T T T T T 0.0 401 T T T T T T T 0.0
10 12 14 16 18 20 22 24 18 19 20 21 22 23 24 25 26
25 MR (2107 GPa kg/m?) 10 RHOB (gfcc) 10
. 110 A
2.4 h oy 08 100 | 0.8 _
i g g
_ 2.3 2 ¢ £ 907 £
= T, 0.6 = - 065
< . s T 4 S
2224 B 3 £ R £
o o 2 794 2
£, 044 & 048
. & § 604 §
i . AR * 0.2
2.0 ™ 02 504 P ‘e nps
19 T T T T T T T 0.0 40+ T T T T T T T 0.0
10 12 14 16 18 20 22 24 18 19 20 21 22 23 24 25 26
MR (x10% GPa kg/m?) RHOB (gfcc)
Figure 9. Rock Properties Relation of Well NEGF2P
ELASTIC PROPERTIES RELATION OF WELL NEGF3PU
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Figure 10. Rock Properties Relation of Well NEGF3PU

CONCLUSION

The estimation of the shear sonic log process includes feature selection, search parameters, regression and cross-
validation. PCA as feature selector conduces GR, DTC, and MSF log as selected features. Furthermore, the
selected features will be the input to search for the best kernel parameter using Grid Search algorithm. In this
process, GS search the best C for linear 0.1 and for rbf 100. Moreover, the best gamma of the linear kernel is 1
and the best one is 0.001. These parameters are employed to estimate synthetic shear sonic log. The estimation
result using linear kernel has R? 0.845 and root mean square error (RMSE) 15.132 and using rbf kernel has R?
0.886 and RMSE 12.989. The estimation results construe that rbf kernel estimates the synthetic sonic log with
more precision than the linear kernel and indicates the linear relation between the estimated and origin log. The
other wells apply SMV with rbf kernel best parameters and selected features to estimation the synthetic shear
sonic. Afterwards, this estimation result was transformed to MR. Crossplot MR-RHOB can separates the
different lithologies and fluid content.
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