Phytoremediation Using a Diversity of Plant Species: A Literature Review
DOI:
https://doi.org/10.31315/mtj.v2i2.14673Keywords:
Contamination, Heavy Metal, PhytoremediationAbstract
Phytoremediation has emerged as a sustainable, plant-driven technology for mitigating heavy metal contamination in both terrestrial and aquatic environments. This review systematically analyzes 35 peer-reviewed studies to assess the phytoremediation potential of diverse plant species, focusing primarily on their roles in absorbing, accumulating, and stabilizing toxic metals such as lead (Pb), cadmium (Cd), chromium (Cr), arsenic (As), and mercury (Hg). The mechanisms explored include phytoaccumulation, phytostabilization, and phytovolatilization—each influenced by plant-specific physiological traits, environmental conditions, and contaminant properties.
Among the reviewed species, Brassica juncea, Vetiveria zizanioides, Azolla pinnata, and Lemna minor were consistently identified as high-performing candidates. Azolla pinnata, for example, demonstrated removal efficiencies exceeding 95% for Fe and 98% for Mn within a seven-day period, while Lemna minor showed up to 99.5% Mn and 98.8% Cu removal, highlighting their rapid uptake capacity and environmental adaptability. These findings reinforce the critical importance of species selection based on contaminant type, site characteristics, and remediation goals.
The review emphasizes that the success of phytoremediation is largely determined by the plant’s growth rate, metal tolerance, and ability to accumulate contaminants in aboveground biomass. Aquatic macrophytes such as Eichhornia crassipes and Lemna spp. offer additional advantages due to their fast growth, minimal land use, and suitability for constructed wetland systems. Overall, this study underscores the strategic value of plant biodiversity in designing effective phytoremediation frameworks and supports the integration of species-specific strategies for post-mining and industrial site rehabilitation.
References
1. Akanil, B., Ozmal, F., & Akin, B. (2017). Phytoremediation and Biosorption Potential of Lythrum salicaria L. for Nickel Removal from Aqueous Solutions. Polish Journal of Environmental Studies, Vol. 26. http://dx.doi.org/10.15244/pjoes/70628
2. Akeem, B., Bassam, S.T., Amjad, B. K., Christopher, R.B., Tawfik, A.S. (2018). Phytoremediation of Cadmium Lead) and Nickel Contaminated Water by Phragmites australis in Hydroponic Systems. Ecological Engineering, Vol. 120, p. 126−133. https://doi.org/10.1016/j.ecoleng.2018.05.035
3. Akinbile, C., Ogunrinde, A., Che Man, H., Hamidi, H., & Aziz, H. (2015). Phytoremediation of Domestic Wastewaters in Free Water Surface Constructed Wetlands Using Azolla pinnata. International Journal of Phytoremediation, Vol. 17, No. 10, p. 979–985. https://doi.org/10.1080/15226514.2015.1058330
4. Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of Heavy Metals Concepts and Applications. Chemosphere, Vol. 91, No. 7, p. 869–881. https://doi.org/10.1016/j.chemosphere.2013.01.075
5. Ariyani, D., Syam, R., Utami, U. B. L., & Nirtha, R. I. (2014). Study of Fe and Mn Metal Absorption by Rat Purun Plants (Eleocharis dulcis) in Mine Acid Water by Phytoremediation. Journal of Scientific and Applied Chemistry, Vol. 8, No. 2, p. 87–93. https://doi.org/10.56064/jps.v20i2.507
6. Ayad, A.H.F., Duaa, S.T., Waqed, H. H., Sandeep, K.L., Sabah, A., & Samjhana, P. (2023). Subsurface Flow Constructed Wetlands for Treating of Simulated Cadmium Ions Wastewater with Presence of Canna indica and Typha domingensis. Chemosphere, Vol. 338. https://doi.org/10.1016/j.chemosphere.2023.139469
7. Basallote, M. D., Zarco, V., Macias, F., Canovas, C. R., & Hidalgo, P. J. (2023). Metal Bioaccumulation in Spontaneously Grown Aquatic Macrophytes in Fe Rich Substrates of a Passive Treatment Plant for Acid Mine Drainage. Journal of Environmental Management, Vol. 345. https://doi.org/10.1016/j.jenvman.2023.118495
8. Bennicelli, R., Stępniewska, Z., Banach, A., Szajnocha, K., & Ostrowski, J. (2004). The Ability of Azolla caroliniana to Remove Heavy Metals (Hg (II), Cr (III), Cr (VI)) from Municipal Waste Water. Chemosphere, Vol. 55, No. 1, p. 141−146. https://doi.org/10.1016/j.chemosphere.2003.11.015
9. Bharti, S., & Banerjee, T.K. (2012). Phytoremediation of the Coalmine Effluent, Ecotoxicology and Environmental Safety, Vol. 81, p. 36−42. https://doi.org/10.1016/j.ecoenv.2012.04.009
10. Biswas, S., Jayaram, S., Philip, I., Balasubramanian, B., Pappuswamy, M., Barcelo, D., Chelliapan, S., Kamyab, H., Sarojini, S., & Vasseghian, Y. (2024). Appraisal of The Potential of Endophytic Bacterium Bacillus amyloliquefaciens from Alternanthera philoxeroides: A Triple Approach to Heavy Metal Bioremediation, Diesel Biodegradation, and Biosurfactant Production. Journal of Environmental Chemical Engineering, Vol. 12, No. 5. https://doi.org/10.1016/j.jece.2024.113454
11. Carlos A. H., Pignata, M.L., & Cirelli, A.F. (2015). Nickel, Lead and Zinc Accumulation and Performance in Relation to Their Use in Phytoremediation of Macrophytes Myriophyllum aquaticum and Egeria densa. Ecological Engineering, Vol. 82, p. 512−516. http://dx.doi.org/10.1016/j.ecoleng.2015.05.039
12. Chen, B. D., Zhu, Y. G., Duan, J., Xiao, X. Y., & Smith, S. E. (2005). Effects of Arbuscular Mycorrhizal Inoculation on Plant Growth and Metal Uptake by Plants Grown in a Soil Contaminated with Heavy Metals. Environmental Pollution, Vol. 138, No. 2, p. 298–308. https://doi.org/10.1016/j.envpol.2005.03.005
13. Corzo, R.A., & Edraki, M., Baker, A.J.M, & Antony, V.E. (2021). Is the Aquatic Macrophyte Crassula helmsii a Genuine Copper Hyperaccumulator. Plant and Soil. Vol. 464. https://link.springer.com/article/10.1007/s11104-021-04955-4
14. Dajiang, Y., Shan, X., Zhibin, Z., Guodong, X., Yanhao, Z., Jianan, G., & Wen, Z. (2023). Air Nanobubble Water Improves Plant Uptake and Tolerance Toward Cadmium in Phytoremediation. Environmental Pollution, Vol. 337. https://doi.org/10.1016/j.envpol.2023.122577
15. Danh, L. T., Truong, P., Mammucari, R., Tran, T., & Foster, N. (2009). Vetiver grass, Vetiveria zizanioides: A Choice Plant for Phytoremediation of Heavy Metals and Organic Wastes. International Journal of Phytoremediation, Vol. 11, No. 8, p. 664–691. https://doi.org/10.1080/15226510902787302
16. Doty, S. L. (2008). Enhancing Phytoremediation through the Use of Transgenics and Endophytes. New Phytologist, Vol. 179, No. 2, p. 318–333. https://doi.org/10.1111/j.1469-8137.2008.02446.x
17. Ebbs, S. D., & Kochian, L. V. (1998). Phytoextraction of Zinc by Oat (Avena sativa), Barley (Hordeum vulgare), and Indian Mustard (Brassica juncea). Environmental Science & Technology, Vol. 32, No. 6, p. 802–806. https://doi.org/10.1021/es970603m
18. Fabio N. M., Anderson, C.W.N., Stewart, R.B., & Robinson, B.H. (2008). Phytofiltration of Mercury Contaminated Water: Volatilisation and Plant Accumulation Aspects. Environmental and Experimental Botany, Vol. 62, p. 78−85. http://dx.doi.org/10.1016/j.envexpbot.2007.07.007
19. Giannin, M., Vancea, C., Popa, S., & Boran, S. (2018). Bioaccumulation and Kinetics Parameters of the Phytoremediation of Cobalt from Wastewater Using Elodea Canadensis. Bulletin of Environmental Contamination & Toxicology, Vol. 100, p. 733–739. https://doi.org/10.1007/s00128-018-2327-3
20. Glick, B. R. (2010). Using Soil Bacteria to Facilitate Phytoremediation. Biotechnology Advances, Vol. 28, No. 3, p. 367–374. https://doi.org/10.1016/j.biotechadv.2010.02.001
21. Guayjarernpanishk, W., & Sampanpanish, P. (2024). Efficiency of Sodium Phytate in The Remediation of As, Mn, and Cu Contamination in Acid Mine Drainage Using Water Hyacinth. Heliyon. Vol. 10, No. 4. https://doi.org/10.1016/j.heliyon.2024.e26590
22. Herniwanti. (2013). Water Plants Characteristic for Phytoremediation of Acid Mine Drainage Passive Treatment. Journal of Environmental Science, Vol. 10, No. 2, p. 45–52.
23. Ismail, I., Mangesa, R., & Irsan, I. (2020). Bioaccumulation of Heavy Metal Mercury (Hg) in Mangroves of Rhizophora mucronata in Kayeli Bay, Buru Regency. BIOSEL (Biology Science and Education): Journal of Science and Education Research, Vol. 9, No. 2, p. 139–153. https://doi.org/10.33477/bs.v9i2.1637
24. Israa, A.A, Yasin, S.R., Jasim, S.S., Abdullah, S.R.S., Almansoory, A.F., & Ismail, N.I. (2022). Removal of Copper by Azolla filiculoides and Lemna minor: Phytoremediation Potential, Adsorption Kinetics and Isotherms, Heliyon, Vol.8, No. 1. http://dx.doi.org/10.1016/j.heliyon.2022.e11456
25. Izmail, N.I., Abdullah, S.R.S., Idris, M., Hasan, H.A., Halmi, M.E., Sbani, N.H., & Jehawi, O.H. (2019). Simultaneous Bioaccumulation and Translocation of Iron and Aluminium from Mining Wastewater by Scirpus grossus. Desalination and Water Treatment, Vol. 163, p. 133−142. https://doi.org/10.5004/dwt.2019.24201
26. Jianpan, X., Ma, S., Li, Y., Zhao, C., & Tian, R. (2020). Pontederia cordata, an Ornamental Aquatic Macrophyte With Great Potential in Phytoremediation of Heavy Metal Contaminated Wetlands. Ecotoxicology and Environmental Safety, Vol. 203. https://doi.org/10.1016/j.ecoenv.2020.111024
27. Jingye, X., Hua, T., Xue, Y., Zhao, L., Sun, H., & Liu, C. (2021). Myriophyllum elatinoides: A potential Candidate for The Phytoremediation of Water with Low Level Boron Contamination. Journal of Hazardous Materials, Vol. 401. http://dx.doi.org/10.1016/j.jhazmat.2020.123333
28. Joann, A., Grosicki, M., Fajerska, E.H., Lekka, M., Waloszek, A., & Koloczek. H. (2010). Cr (VI) Bioremediation by Aquatic Macrophyte Callitriche cophocarpa sendtn. Chemosphere, Vol. 79, p. 1077−1083. http://dx.doi.org/10.1016/j.chemosphere.2010.03.019
29. Kumar, P. B. A. N., Dushenkov, V., Motto, H., & Raskin, I. (1995). Phytoextraction: The Use of Plants To Remove Heavy Metals From Soils. Environmental Science & Technology, Vol. 29, No. 5, p. 1232–1238. https://doi.org/10.1021/es00005a014
30. Kurniawan, R., Hamim, H., Henny, C., & Satya, A. (2022). Identification of Potential Phytoaccumulator Plants from Tailings Area as a Gold Phytomining Agent. Journal of Ecological Engineering, Vol. 23, No. 1, p. 169−181. https://doi.org/10.12911/22998993/143978
31. Ma, L. Q., Komar, K. M., Tu, C., Zhang, W., Cai, Y., & Kennelley, E. D. (2001). A Fern That Hyperaccumulates Arsenic. Nature, Vol. 409, No. 6820, p. 579. https://doi.org/10.1038/35054664
32. Ma, Y., Rajkumar, M., & Freitas, H. (2011). Inoculation of Plant Growth Promoting Bacterium Achromobacter Xylosoxidans Strain for Improved Phytoremediation of Zn Contaminated Soil. Journal of Hazardous Materials, Vol. 189, No. 1–2, p. 363–370. https://doi.org/10.1016/j.jhazmat.2011.02.054
33. Mahar, A., Wang, P., Li, R., Zhang, Z., & Wang, Q. (2016). Immobilization of Lead and Cadmium in Contaminated Soil Using Amendments: A review. Environmental Pollution, Vol. 218, p. 1130–1141. https://doi.org/10.1016/j.envpol.2016.08.051
34. Marcos, V.T.G., Souza, R.R., Teles, V.S., & Mendes, E.A. (2014). Phytoremediation of Water Contaminated with Mercury Using Typha Domingensis in Constructed Wetland. Chemosphere, Vol. 103, p. 228−233. http://dx.doi.org/10.1016/j.chemosphere.2013.11.071
35. Mardalena, M., Faizal, M., & Adipati, N. (2018). Metal of Iron (Fe) and Manganese (Mn) from Wastewater Coal Mining with Phytoremediation Techniques Using Floating Fern (Salvinia natans), Water Lettuce (Pistia stratiotes), and Water Hyacinth (Eichhornia crassipes). BIOVALENTIA: Biological Research Journal, Vol. 4, No.1, p. 45–52. https://doi.org/10.24233/BIOV.4.1.2018.107
36. Marques, A. P., Rangel, A. O., & Castro, P. M. (2009). Remediation of Heavy Metal Contaminated Soils: Phytoremediation as A Potentially Promising Clean Up Technology. Critical Reviews in Environmental Science and Technology, Vol. 39, No. 8, p. 622–654. https://doi.org/10.1080/10643380701798272
37. Marwa, A. (2024). Evaluation of Wetland Plants Treatment Potentials for Acid Mine Drainage in Tanzania. Nigerian Journal of Technology, Vol. 43, No. 2, p. 381–390. https://doi.org/10.4314/njt.v43i2.21
38. Morin, J. V., & Santi, D. (2020). Phytoremediation Study of Lead (Pb) and Cadmium (Cd) Metals by Kayambang Plant (Salvinia molesta). Natural Journal, Vol. 16, No. 2, p. 85–95. http://dx.doi.org/10.30862/jn.v16i2.112
39. Mukhtar, S., Bhatti, H.N., Khalid, M., & Anwar, M. (2010). Potential of Sunflower (Helianthus annuus l.) for Phytoremediation of Nickel (Ni) and Lead (Pb) Contaminated Water. Pakistan Journal of Botany, Vol. 42, No.6.
40. Nasution, R., Wardana, S., Tanzerina, N., Estuningsih, S., & Juswardi. (2020). Potential of Neptunia oleracea Lour. on Phytoremediation Coal Acid Mine Drainage. Sriwijaya Bioscientia, Vol. 1, No. 2, p. 35–38. https://doi.org/10.24233/sribios.1.2.2020.190
41. Nicholas, R.A., Sternberg, S.K., & Claussen, K. (2003). Lead and Nickel Removal Using Microspora and Lemna minor. Bioresource Technology, Vol. 89, No. 1, p. 41−48. http://dx.doi.org/10.1016/S0960-8524(03)00034-8
42. Qadri, H., Baba, U., Javaid, O., Hamid Dar, G., & Bhat, R. (2021). Ceratophyllum demersum: An accretion biotool for heavy metal remediation. Science of The Total Environment, 806, 150548. https://doi.org/10.1016/j.scitotenv.2021.150548
43. Pertiwi, S., Juswardi, J., Yudono, B., & Nita, F. A. (2013). Phytoremediation Ability of Salvinia molesta at Several Concentrations of Petroleum Liquid Waste. Journal of Science Research, Vol. 16, No. 1.
44. Smits, P.E. (2005). Phytoremediation. Annual Review of Plant Biology, Vol. 56, p. 15–39. https://doi.org/10.1146/annurev.arplant.56.032604.144214
45. Pulford, I. D., & Watson, C. (2003). Phytoremediation of Heavy Metal Contaminated Land by Trees: A review. Environment International, Vol. 29, No. 4, p. 529–540. https://doi.org/10.1016/S0160-4120(02)00152-6
46. Rai, P. (2021). Heavy Metals and Arsenic Phytoremediation Potential of Invasive Alien Wetland Plants Phragmites karka and Arundo donax: Water Energy Food (WEF) Nexus linked sustainability implications. Bioresource Technology Reports, Vol. 15. https://doi.org/10.1016/j.biteb.2021.100741
47. Rai, P. K. (2008). Heavy Metal Pollution in Aquatic Ecosystems and Its Phytoremediation Using Wetland Plants: an Ecosustainable Approach. International Journal of Phytoremediation, Vol. 10, No. 2, p. 133–160. https://doi.org/10.1080/15226510801913918
48. Rascio, N., & Izzo, N.F. (2011). Heavy Metal Hyperaccumulating Plants: How and Why do it? and What Makes Them So Interesting. Plant Science, Vol. 180, No. 2, p. 169–181. https://doi.org/10.1016/j.plantsci.2010.08.016
49. Rezania, S., Taib, S. M., Din, M. F. M., Dahalan, F. A., & Kamyab, H. (2016). Comprehensive Review on Phytotechnology: Heavy Metals Removal by Diverse Aquatic Plant Species from Wastewater. Journal of Hazardous Materials, Vol. 318, p. 587–599. https://doi.org/10.1016/j.jhazmat.2016.07.053
50. Rugh, C. L., Senecoff, J. F., Meagher, R. B., & Merkle, S. A. (1998). Development of Transgenic Yellow Poplar for Mercury Phytoremediation. Nature Biotechnology, Vol. 16, No. 10, p. 925–928. https://doi.org/10.1038/nbt1098-925
51. Salt, D. E., Smith, R. D., & Raskin, I. (1998). Phytoremediation. Annual Review of Plant Physiology and Plant Molecular Biology, Vol. 49, No. 1, p. 643–668. https://doi.org/10.1146/annurev.arplant.49.1.643
52. Sharma, P., & Agrawal, M. (2005). Biological Effects of Heavy Metals: An Overview. Journal of Environmental Biology, Vol. 26, No. 2, p. 301–313.
53. Singh, S., Karwadiya, J., Srivastava, S., Patra, P.K., & Venugopalan, V.P. (2022). Potential of Indigenous Plant Species for Phytoremediation of Arsenic Contaminated Water and Soil. Ecological Engineering, Vol. 175, 2022. http://dx.doi.org/10.1016/j.ecoleng.2021.106476
54. Sivakumar, S., Hong, S.C., Yi, P.I., Jang, S.H., Suh, J.M., Jung, E.S., Park, J.S., Palanivel, V., Song, Y.C., Cho, L.H., Park, Y.H., & Kim, J.K. (2023). Biochemical Responses and Phytoremediation Potential of Azolla imbricata (Roxb.) Nakai in Water and Nutrient Media Exposed to Waste Metal Cutting Fluid along with Temperature and Humidity Stress. Journal of Hazardous Materials, Vol. 451. https://doi.org/10.1016/j.jhazmat.2023.131101
55. Snyder, H. (2019). Literature Review as A Research Methodology: An Overview and Guidelines. Journal of Business Research. Vol. 104, p. 333−339. https://doi.org/10.1016/j.jbusres.2019.07.039
56. Souza, T.D., Borges, A.C., Braga, A.F., Veloso, R.W., & Matos, A.T. (2019). Phytoremediation of Arsenic Contaminated Water by Lemna Valdiviana: An Optimization Study. Chemosphere, Vol. 234, p. 402−408. http://dx.doi.org/10.1016/j.chemosphere.2019.06.004
57. Suelee, A.L., Hasan, S.N.M.S., Kusin, F.M., Yusuff, F.M., & Ibrahim, Z.Z.. (2017). Phytoremediation Potential of Vetiver Grass (Vetiveria zizanioides) for Treatment of Metal-Contaminated Water. Water, Air, & Soil Pollution. Vol. 228, No. 158. https://link.springer.com/article/10.1007/s11270-017-3349-x
58. Yadav, S. K. (2010). Heavy Metals Toxicity in Plants: An Overview on The Role of Glutathione and Phytochelatins in Heavy Metal Stress Tolerance of Plants. South African Journal of Botany, Vol. 76, No. 2, p. 167–179. https://doi.org/10.1016/j.sajb.2009.10.007
59. Yunus, R., & Prihatini, N. S. (2018). Phytoremediation of Fe and Mn of Coal Mine Acid Water with Water Hyacinth (Eichornia crassipes) and Rat Purun (Eleocharis dulcis) in the LBB System at PT. JBG South Kalimantan. Journal of Scientific, Vol. 7, No. 1, p. 73−85. https://doi.org/10.35580/sainsmat7164812018
60. Zhou, Q. X., & Song, Y. F. (2007). Remediation of contaminated soils: Principles and methods. Beijing: Science Press.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Eprilia Simamora, Mohammad Nurcholis, Aldin Ardian, Rika Ernawati

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.