

Opsi p-ISSN 1693-2102

Vol. 17, No. 2, December 2024 e-ISSN 2686-2352

 http://jurnal.upnyk.ac.id/index.php/opsi/index

Improving the job shop scheduling algorithm to minimize total

penalty costs considering maintenance activity

Puryani 1, Nurmalia Chalida 2 , Apriani Soepardi 1*, Mochammad Chaeron 1, Laila Nafisah 1

1Industrial Engineering Department, Universitas Pembangunan Nasional Veteran Yogyakarta, Babarsari 2

Tambakbayan Yogyakarta 55281 Indonesia
2CV Surya Mitra Utama, Jl. Lapangan Sadang 46, Taman, Sidoarjo61257 Jawa Timur

*Corresponding Author: apriani.soepardi@upnyk.ac.id; Tel.: +62274-485268

Article history: ABSTRACT

Received: 15 May 2024 Production scheduling is generally based on the

assumption that resources are always available. In reality,

these resources, machines, and supporting facilities

experience limited availability due to interruptions during

the production process. Therefore, to improve these

conditions, the maintenance process conducted to reduce

the disruption level of the machine needs to be scheduled

as part of the available for job processing leading to penalty

costs, such as tardiness and earliness. This research aims to

develop a new algorithm to solve job shop scheduling

problems to minimize the total penalty cost by considering

machine unavailability due to scheduled maintenance

activities. The proposed model modifies the existing model

using a combination of priority rules and a heuristic

approach algorithm known as priority dispatching. The

result showed that the proposed model produces a greater

total cost with a larger flow time than the previous model.

Although the flow time is larger, it is more realistic

according to real conditions because the proposed model

considers machine maintenance activities. Furthermore,

the combination of priority rules used also affected the flow

time and the total penalty costs incurred, which can be

minimized through several alternatives.

Revised: 12 August 2024

Accepted: 30 December 2024

Published: 31 December 2024

Keywords:

Scheduling

Job shop

Earliness

Tardiness

Penalty cost

DOI:

https://doi.org/10.31315/opsi.v17i2.12291

 This is an open access article under the CC–BY license.

1. INTRODUCTION

Scheduling is a plan for arranging job sequences and allocating resources, both time and facilities, to each

operation that must be completed [1]. The essence of the scheduling objective function is to minimize the total

processing time (makespan). In addition, scheduling based on machine environment is divided into several

types. These include single and multiple machines, flow, job, and open shops [2–4]. Li [5], Sivrikaya-Serifoglu

& Ulusoy [6], and Dorndoft et al. [7] developed a production scheduling optimization algorithm that can

handle NP-Hard problems while taking time and resource constraints into account. They employed branch

and bound algorithms and genetic algorithms to manage the complexity, aiming to minimize penalty costs

and delays. We widely use heuristic and metaheuristic algorithms for scheduling because they can overcome

the limitations of mathematical models or exact algorithms that are too slow for large scales [8–10]. Some

studies use a combination of exact algorithms and heuristics to solve complex scheduling problems with the

aim of optimizing time or cost criteria [11–13].

mailto:apriani.soepardi@upnyk.ac.id
https://doi.org/10.31315/opsi.v17i2.12291
https://creativecommons.org/licenses/by/4.0/

Opsi 2024, Vol. 17, No. 2 Page| 356

A job shop is a manufacturing environment where new ones often have different work routes or

operations [2–3]. Job shop scheduling is characterized by scheduling n jobs on m machines, each comprising

an unidentical machine sequence or routing. The simple form of this model assumes that each job only passes

through a machine once on its route to the process. However, other models allow each job to pass through

similar machines more than once on its route.

Production scheduling is generally based on the assumption that resources are always available.

However, in reality, these resources, including machines, equipment, and facilities that support the production

process, have limited availability of resources [14–16]. For example, when the machine is interrupted during

the production process. These conditions are improved by scheduling and accomplishing maintenance

activities to reduce the disturbance level on the machine. This causes the job process to take a long time,

resulting in penalties such as tardiness and earliness costs. The earliness penalty occurs when the work is

completed before the specified time limit, thereby saving costs [17]. Meanwhile, tardiness occurs because the

work was not completed within the predetermined time limit, which leads to a penalty [10–12]. Pham &

Klinkert [18] and Hsu [19] emphasize makespan reduction as the main priority in scheduling, even though it

is applied in different sectors, namely healthcare services and the manufacturing industry.

The issue of scheduling several jobs on a single machine was developed by Li [5] and parallel machine

by Sivrikaya-Şerifoǧ lu & Ulusoy [6] to minimize the sum of earliness and tardiness costs. Chen [16] researched

a single machine that addressed the issue of machine unavailability in scheduling. The investigation entailed

scheduling problems by several time intervals as a maintenance activity. It is designed for a single machine

and focuses on improving the periodic maintenance schedule. Andriani [23] developed a job shop scheduling

model to minimize penalty costs without considering disruptions to the production process. Therefore, the

proposed model is designed based on this model by considering the maintenance activities schedule.

2. LITERATURE REVIEW

The earliness penalty occurs when the work is completed before the specified time limit, thereby saving

costs. Meanwhile, tardiness occurs because the work was not completed within the predetermined time limit,

which leads to a penalty. Baker and Scudder [1] formulated the earliness and tardiness model as follows.

𝐸𝑖 = max(0, 𝑑𝑖 − 𝐶𝑖) = (𝑑𝑖 − 𝐶𝑖)
+ (1)

𝑇𝑖 = max(0, 𝐶𝑖 − 𝑑𝑖) = (𝐶𝑖 − 𝑑𝑖)+ (2)

𝑓(𝑆) = ∑(𝛼𝐸𝑖 + 𝛽𝑇𝑖)

𝑛

𝑖=1

 (3)

where,

Ei : Earliness on job i

di : Due date on job i

Ci : Completion time on job i

Ti : Tardiness on job i

α : Earliness penalty unit cost

β : Tardiness penalty unit cost

f(s) : Function of on S schedule

Andriani [23] developed a job shop scheduling using the priority dispatching algorithm. The algorithm

used a forward and backward-forward scheduling approach to minimize the total earliness and tardiness

costs. It is assumed that no other activities can interrupt the production process. The notations used in this

model will be employed to develop a proposed algorithm and they are presented below.

St : a collection of tasks that are ready to be scheduled at step t (iteration step)

Pst : a partial schedule that contains scheduled operations

Cj : completion time of the j-th operation

Rij : start time of the i-th job and the j-th operation

R* : the fastest time an operation can be started (R* = Cj + tij)

Opsi 2024, Vol. 17, No. 2 Page| 357

m* : machine where R* can be realized

Noj : the next operation of the job

Nom : the next operation of the machine

jobStart : operation start time which is constrained by the previous operation of the job

mcStart : operation start time which is limited to the previous operation of the machine

startTime : operation start time of the old schedule

endTime : operation finish time of the old schedule

newStart : operation start time of the new schedule

newEnd : operation finish time of the new schedule

devSt : deviation of the start time between the old and new schedules

Aff : set of operations affected after rescheduling with new start and finish times

O : affected set of operations

I : index of aff

G : index of O

The calculation stages of this model realized with the forward approach, are described in the following

algorithm.

Step 1: Initiation Stage

Identification of the number and routing of jobs.

Step 2: Set t = 1, Cj = 0, and Pst = 0 (Pst is a partial schedule containing scheduled operations).

Set St (St is the set of operations ready to be scheduled) is equal to all operations without

predecessors.

Step 3: For each operation in St that requires machine m where Rij is performed, select task ij.

 In model 1: Select task ij with the largest remaining processing time, taking into account the

effect of tij on task ij (LPTR).

 In model 2: Select task ij with the largest remaining processing time without considering the

effect of tij on task ij (LPTR+1).

Step 4: The selected task ij will have Rij = R* where R* equals m*.

a. Is task ij > 1?

When selecting whether task ij contains St and m* where R* is greater than one?

If not, then proceed to Step 5.

b. If yes, select the ij task with the Short Processing Time (SPT) priority rule, and proceed to

Step 5.

c. On Step 4b, is task ij > 1?

When selecting Step 4b, is task ij in St and accomplished in m* where R* is greater than one?

If not, then it proceeds to Step 5.

d. If yes, select the ij task with the First Come First Serve (FCFS) priority rule, and proceed to

Step 5.

Step 5: Proceed to the next step by creating a Pst+1 partial schedule and refine the data set by:

a. Enter the selected task ij on Pst+1.

b. Eliminate the selected task ij from St and form St+1 by adding its successor when all of its

predecessor tasks have been scheduled.

c. Add t to 1.

d. Update the available time for each machine.

e. Fix Cj for all task ij in St+1, namely:

 (a) For task ij, which is the successor of the selected task,

Cj = max (R*, available time in machine k).

(b) For task ij that has not been selected at the previous Step t,

Cj = max (Cj at Step t before, available time in machine k)

Step 6: When there are still unscheduled tasks, proceed to Step 3, otherwise stop.

The following steps describe the calculation stages for the Andriani [23] algorithm, realized with the

backwards-forward approach.

Opsi 2024, Vol. 17, No. 2 Page| 358

Step 1: Initiation Stage

Identification of the number and routing of jobs.

Step 2: Set t = 1 and Pst = 0 as well as determine St for each job starting from the most recent operation

where Rij on the last task ij = di.

Step 3: For each operation in St that requires machine m where Rij is performed, select task ij.

In model 1: Select task ij with the largest remaining processing time taking into account tij in task

ij (LPTR).

In model 2: Select task ij with the largest remaining processing time without taking into account

tij in task ij (LPTR+1).

Step 4: The selected task ij will have Cj = C* where C* equals m*.

a. Is task ij > 1?

At the time of selection, is task ij in St and m* including C* greater than one?

If not, then proceed to Step 5.

b. If yes, then select the ij task with the Short Processing Time (SPT) priority rule, and proceed

to Step 5.

c. On Step 4b, is task ij >1?

At the time of selecting Step 4b, is task ij in St and requires m* where C* is performed more

than once?

If not, then proceed to Step 5.

d. If yes, then select the ij task with the First Come First Serve (FCFS) priority rule. Proceed to

Step 5.

Step 5: Proceed to the next step by creating Pst+1 partial schedule and refine the data set by:

a. Enter the selected task ij in Pst+1.

b. Eliminate the selected task ij from St and form St+1 by adding its predecessor if all of its

successor tasks have been scheduled.

c. Add t with 1.

d. Update the available time for each machine.

e. Fix Rij for all task ij in St+1, namely:

(a) For task ij, which is the predecessor of the selected task,

Rij = min (C*, available time on machine k).

(b) For task ij that has not been selected at the previous Step t,

Rij = min (Rij at Step t before, available time on machine k).

Step 6: If there are still unscheduled tasks, proceed to Step 3, then stop.

Step 7: If the scheduling results are infeasible, advance all infeasible tasks at point t = 0.

Step 8: Set i = 1, g = 1, completion time = 0, devSt = 0, O = Φ, jobStart = mcStart = 0 for all operations.

Step 9: O[g] as current operation, jobStart = mcStart = 0 for infeasible job. Define:

Current newStart = max (jobStart, mcStart)

Current newEnd = Current newStart + tso

Step 10: If the current job does not match the affected operating group in aff go to Step 11 and if not, then

reset aff (v) to Step 12.

Step 11: Define:

newStart aff (v) = current newStart + (Cj the biggest infeasible job x (-1)). Proceed to Step 12.

Step 12: Calculate newEnd aff (v) = newStart aff (v) + tij

Step 13: Set aff[i] = current operation; i add with 1.

Step 14: Define noj, if yes, then:

O[g] = noj and jobStart dari O[g] = current newEnd

Current newEnd = startTime + (Cj the biggest infeasible job x (-1)). Proceed to Step 15.

Step 15: Calculate newEnd aff (v) = current newEnd + tij

Step 16: Define nom, if yes, then:

O[g] = nom and mcStart from O[g] = current newEnd

Current newEnd = startTime + (Cj the biggest infeasible tasks x (-1)). Proceed to Step 17.

Step 17: Calculate newEnd aff (aff) = current newEnd + tij

Step 18: Subtract the current operation from set O and add a new member O from Step 13.

Opsi 2024, Vol. 17, No. 2 Page| 359

Step 19: If O = Ø, hence, stop, if not, search new noj and nom from the current available set O.

Chen [16] discusses single-machine scheduling considering limited machine availability due to the

periodic maintenance schedule. There is a time interval T between two consecutive maintenance activities. A

maintenance activity requires an amount of time t for execution (Figure 1).

Figure 1. Scheduling with maintenance periods on a single machine [16]

Description:

J[j] : j-th job

M : maintenance time

T : time interval between two maintenance periods

t : amount of time to perform one maintenance

Furthermore, Chen [16] formulates the problem to minimize the total flow time. The total flow time of all

jobs in schedule S is modeled as follows.

𝑓(𝑆) = ∑ 𝐶𝑖

𝑛

𝑖=1

 (4)

3. MODEL DEVELOPMENT

The differences among the models from Chen [16], Andriani [23], and the proposed one are shown in

Table 1. Chen [16] developed a method to minimize total flow time in a scheduling system that considers

periodic maintenance and non-resumable jobs. The proposed heuristic algorithm shows results close to

optimal with an average error of only 0.57%. This algorithm is much faster compared to the branch and bound

algorithm, making it suitable for large-scale problems. Meanwhile, Andriani [23] aimed to develop a job shop

scheduling algorithm to minimize the total costs of earliness and tardiness. It modified the algorithm by

providing different priority rules.

Table 1. The difference among the models

No. Description Chen [16] Andriani [23] Proposed Model

1 Machine

environment

Single machine Job shop Job shop

2 Assumptions

used

There is a schedule

of maintenance

activities during

the production

process.

No activity can

interrupt the

production

process or

activities

There is a schedule

of maintenance

activities during the

production process

The following assumptions were employed:

1. Scheduling is conducted for processes that can be stopped (manufacturing)

2. Set-up time is not affected by the work order, therefore, it can be considered part of the processing time.

3. Transportation time is negligible

4. Job starts at t=0 (forward approach)

5. Static job arrival pattern

6. Penalty costs are dissimilar

7. Each job has a different due date

8. The generated process determines the schedule of maintenance activities

Opsi 2024, Vol. 17, No. 2 Page| 360

9. Scheduled maintenance activities are simultaneously performed on each machine

10. At the time of the scheduled maintenance activity, the machine was not operating.

The proposed model modifies the basic one designed by Andriani [23]. Figure 2 shows that the proposed

model is in the form of a job shop flowchart.

Figure 2. The job shop flowchart

The triplet notation is applied in the study, which notation consists of (i, j, k), namely i indicates the job

number, j indicates the operation sequence, and k indicates the machine used. The additional notations used

in the proposed algorithm are:

t : iteration step

n : number of jobs

tij : processing time of the i-th job and the j-th operation

Cij : completion time of the i-th job and the j-th operation

C* : the fastest time the operation can be completed

Px : maintenance activities that have been scheduled by x

 (maintenance period, x=1, 2, …, x+1)

 k : machine number

di : i-th due date

Irc : time interval for job execution that can be scheduled

The calculation stages of the proposed model with a forward approach are described in the following

algorithm.

Step 1: Initiation stage

Identify the number and routing of jobs

Step 2: Set t = 1, Rij = 0, and Pst = 0 (Pst is a partial schedule containing scheduled operations). Set St (St is

the set of operations ready to be scheduled) is equal to all operations without predecessor.

Step 3: For every operation in St that requires an m machine where Cij is performed, select task ij.

In model 1: Select the task ij with the largest remaining processing time that considers tij in the

task ij (LPTR).

In model 2: Select task ij with the largest remaining processing time without considering tij in

the task ij (LPTR+1)

Step 4: a. If there is only one task ij selected, task (ij = 1), then schedule the task,

b. If the number of selected tasks ij is more than one task (ij > 1), then select task ij with the SPT

priority rule (min tij),

c. If there is still a task ij that has (min tij) at the same price (min tij > 1), then select the task with

FCFS priority rule.

Step 5: a. If the task ij selected has Rij + tij = Cij ≤ Px (maintenance activity start schedule), then schedule

it before Px,

Opsi 2024, Vol. 17, No. 2 Page| 361

b. If the task ij selected has Rij + tij = Cij > Px (maintenance activity start schedule), then schedule

it after Px,

Task ij selected will have Cij = C* where C* will have m*.

Step 6: Proceed to the next step by creating a partial schedule Pst+1 and refine the data set as follows:

a. Input the selected task ij at Pst+1.

b. Remove the selected task ij from St and form St+1 by adding its successor if all its predecessor

tasks are already scheduled except for the last task.

c. Add t with 1

d. Update the available time for each machine

e. Fix the Rij for all task ij in St+1, namely:

1. For which is the successor of the selected task ij,

Rij = max (C*, available time at machine k).

2. For task ij that has not been selected in the previous step t,

 Rij = max (Rij at step t before, available time at machine k).

Step 7: If there are still unscheduled tasks, perform Step 3, otherwise stop.

The flowchart of the scheduling algorithm of the proposed forward approach model can be seen in Figure

3.

Start

Identify the
number

and routing
of jobs

Set t= 1, Rij= 0, and Pst= 0.
Set St (St is the set of

operations ready to be
scheduled) is equal to all

operations without
predecessor.

For every operation in
St that requires an m
machine where Cij is

performed,

Select the task ij
based on rules LPTR

(model 1) and
LPTR+1 (model 2)

The number of task
ij = 1?

Select task ij with the
SPT priority rule

Rij+tij=Cij ≤ Px

(min tij > 1) ?

Select the task with
FCFS priority rule

Schedule it after Px

Schedule it before Px

Add t with 1

A

Proceed to the next
stage by creating a

partial schedule Pst+1.

Input the selected task
ij at Pst+1.

B

A

Update the available
time for each

machine

Fix the Rij for all task
ij in St+1,

Are there still
unscheduled tasks

Stop

B

no

yes

no

no

yes

yes

no

yes

Figure 3. Flowchart of the proposed forward approach model

Opsi 2024, Vol. 17, No. 2 Page| 362

The calculation stages for the proposed model with the backward-forward approach are described in the

following algorithm.

Step 1: Initiation Stage

Identify the number and routing job.

Step 2: Set t = 1 and Pst = 0 and determine St of each job starting from the most recent operation where

Cij at last task ij = di.

Step 3: For each operation in St that requires m machine where Rij is performed (Rij = di – tij), select task

ij.

In model 1: Select the task ij that has the largest remaining processing time that considers tij in

the task ij (LPTR)

In model 2: Select task ij, which has the largest remaining processing time without considering

tij in task ij (LPTR+1).

Step 4: a. If there is only one task ij selected, task (ij = 1), then schedule the task

b. If the number of selected tasks ij is more than one task (ij > 1), then select task ij with the SPT

priority rule (min tij)

c. If there is still a task ij that has (min tij) at the same price (min tij > 1), then select the task with

FCFS priority rule.

Step 5: Schedule the selected ij task before the possible Px

The selected task ij will have an Irc that has considered the Px schedule to have R*, with m*.

Step 6: Proceed to the next step by creating a partial schedule Pst+1 and refine the data set by:

a. Input the selected task ij at Pst+1.

b. Remove the selected task ij from St and form St+1 by adding its successor if all its predecessor

tasks are already scheduled except for the last task.

c. Add t with 1

d. Update the available time for each machine

e. Fix the Rij for all task ij in St+1, namely:

(a) For which is the successor of the selected task ij, Rij = max (C*, available time at machine

k)

(b) For task ij that has not been selected in the previous step t, Rij = max (Rij at step t before,

available time at machine k).

Step 7: If there is still an unscheduled task, perform Step 3 and then stop.

Step 8: If the scheduling result is infeasible, advance all infeasible tasks to the point of t = 0.

Step 9: Set i = 1, g = 1, finish time = 0, devSt = 0, O = Φ, jobStart = mcStart = 0 for all operations.

Step 10: O[g] as the current operation, jobStart = mcStart = 0 for infeasible jobs.

Determine:

newStart now= max (jobStart, mcStart)

newEnd now = newStart now+ tso

Step 11: If the current job does not match the set of affected operations in the aff set, move to Step12, if

not then reset aff (v) to Step 13.

Step 12: Determine:

newStart aff (v)= newStart now+ (Cj job the largest infeasible x (-1))

Proceed to Step 13

Step 13: Calculate newEnd aff (v) = newStart aff (v) + tij. Then move to Step14

Step 14: If newEnd aff(v) ≤ Px (maintenance activity start schedule), then schedule before Px

If newEnd aff(v) > Px (maintenance activity start schedule), then schedule before Px

Step 15: Set aff[i] = current operation; i add with 1.

Step 16: Determine noj, if it exists then:

O[g] = noj and jobStart from O[g] = newEnd now,

newEnd now= startTime + (Cj job the largest infeasible x (-1)),

Proceed to Step 17.

Step 17: Determine newEnd aff (v) = newEnd now + tij.

Check the Step 14, Move to the Step 18

Step 18: Determine nom, if it exists then:

Opsi 2024, Vol. 17, No. 2 Page| 363

O[g] = nom and mcStart from O[g] = newEnd now

newEnd now= startTime + (Cj job the largest infeasible x (-1)).

Proceed to Step 19.

Step 19: Calculate newEnd aff (aff) = newEnd now + tij,

Check the Step 14, Move to the Step 20

Step 20: Subtract the current operation from set O and add the new member O from Step 15.

Step 21: If O = Ø, then stop, otherwise find new noj and nom from the current set O.

4. NUMERICAL EXAMPLES

Simulations were conducted for six cases, with details of the total jobs, machines, and penalty costs used

(Table 2). The cost of earliness and tardiness is $ 1/unit time and $ 2/unit time, respectively. For each machine,

maintenance activity needs a certain amount of time t = 2 units of time. Whereas, there is a time interval of T

= 8 units of time between two consecutive maintenance periods [16].

Table 2. The case details for simulations

Cases Number of jobs Number of machines Source

I 3 4 Andriani [23]

II 3 5 Andriani [23]

III 4 3 Generated data

IV 5 3 Generated data

V 4 5 Generated data

VI 3 3 Gaol et al. [24]

The due date of jobs 1, 2, 3, 4, and 5 are 38, 36, 37, 38, and 37 units of time, respectively. The process time

data (Table 3) and machine routing (Table 4) used for each case are shown below.

Table 3. The process time data

CASE I Operation j-th CASE II Operation j-th

Job i-th 1 2 3 4 Job i-th 1 2 3 4 5

1 8 7 8 6 1 8 7 8 6 5

2 5 7 8 7 2 5 7 8 7 8

3 6 5 6 6 3 6 5 6 6 7

CASE III Operation j-th CASE IV Operation j-th
Job i-th 1 2 3 Job i-th 1 2 3

1 7 6 8 1 8 7 5
2 6 8 5 2 5 7 8
3 8 5 7 3 6 5 6
4 5 7 6 4 5 6 7

 5 8 5 6

CASE V Operation j-th CASE VI Operation j-th
Job i-th 1 2 3 4 5 Job i-th 1 2 3

1 5 7 8 6 5 1 5.65 5.70 3.18
2 6 5 7 8 7 2 11.17 11.41 6.03
3 8 7 6 8 6 3 6.25 3.35 -
4 6 5 7 6 8

Each of the cases ais solved using two different combinations of priority rules, namely Least Processing

Time Remaining (LPTR) – Shortest Processing Time (SPT) – First Come First Serve (FCFS) and LPTR+1 – SPT –

FCFS, by employing two scheduling approaches, namely forward and backward-forward approach [5,21–

22,25].

Opsi 2024, Vol. 17, No. 2 Page| 364

Table 4. The machine routing data

CASE I Operation j-th CASE II Operation j-th

Job i-th 1 2 3 4 Job i-th 1 2 3 4 5

1 3 1 4 2 1 3 1 4 5 2

2 2 1 4 3 2 2 1 5 3 4

3 1 3 2 4 3 1 3 2 4 5

CASE III Operation j-th CASE IV Operation j-th

Job i-th 1 2 3 Job i-th 1 2 3
1 2 1 3 1 3 1 3
2 1 2 3 2 2 3 1

3 2 3 1 3 1 3 2

4 3 1 2 4 1 2 3

 5 2 1 2

CASE V Operation j-th CASE VI Operation j-th

Job i-th 1 2 3 4 5 Job i-th 1 2 3

1 3 4 2 5 1 1 1 2 3

2 2 1 5 4 3 2 2 1 3

3 4 5 4 1 3 3 1 3 -

4 1 3 2 5 4

5. RESULTS AND DISCUSSION

Table 5 shows that each case with various jobs and machines has different penalty costs. However,

increasing the number of machines and jobs results in a higher total penalty cost. In cases I (three jobs, four

machines) and II (three jobs, five machines), the job will have a longer routing or processing approach.

Furthermore, the recapitulation results of all cases in the proposed model are shown below.

Table 5. Recapitulation of total penalty costs

Case
Forward Approach Backward-forward Approach

LPTR – SPT – FCFS LPTR+1 – SPT – FCFS LPTR – SPT – FCFS LPTR+1 – SPT – FCFS

I 18.0 18.0 17.0 17.0

II 64.0 64.0 64.0 64.0

III 29.0 29.0 22.0 22.0

1V 42.0 52.0 35.0 55.0

V 60.0 54.0 82.0 54.0

VI 67.2 30.5 28.8 28.7

When the number of jobs and machines increases due to lower total penalty costs, such as in Cases II

(three jobs, five machines) and V (four jobs, five machines), the total penalty cost generated in Case V is lower

than in Case II. In contrast to Cases III (four jobs, three machines) and IV (five jobs, three machines), adding

the same number of jobs and machines results in a higher total penalty cost. This is because the number of

machines is less than the number of jobs.

A combination of different priority rules affects the incidence of penalty costs. This is because the order

of the job process is carried out according to their respective priority rules. However, this is similar to the

comparison of Cases II and V in the backward-forward approach (LPTR - SPT - FCFS), which resulted in a

higher total cost. Cases II and V resulted in $64 and $82, respectively. This shows that the order of work priority

affects the resulting penalty costs.

Table 6 shows that the scheduling results of the proposed model are higher than Andriani [23]. This is

because the proposed scheduling model has a stipulated time used for the maintenance activities of each

Opsi 2024, Vol. 17, No. 2 Page| 365

machine. With maintenance time, the job is completed within a longer period. Figure 4 shows the difference

in the Gantt chart between the results of the proposed and Andriani's [23] models. The differentiated Gantt

chart is a backward-forward approach (LPTR+1 - SPT - FCFS) used in Case I to represent the results obtained.

The time used for maintenance activities increases the flow time.

Table 6. The comparison of results between Andraini [23] and the proposed models

Model Case
Forward Approach Backward-forward Approach

LPTR – SPT – FCFS LPTR+1 – SPT – FCFS LPTR – SPT – FCFS LPTR+1 – SPT – FCFS

Andriani

[23]

I 13.0 13.0 - -

II 22.0 22.0 60.0 64.0

Proposed
I 18 18 17 17

II 64 64 64 96

Figure 4. Gantt chart differences in the backward-forward approach in Case I

Figure 5 shows scheduling after the backward-forward stage has been conducted. Scheduling carried out

after the backward stage leads to an infeasible result. Therefore, it is carried out in the forward stage, and the

schedule becomes feasible. In this Gantt chart, the resulting flow time can be suitable because, during the job

process, none was allocated to the maintenance activities, hence, the machine needs to be available at all times.

Figure 5. The application of a backward-forward approach to produce a feasible task

The forward stage causes a shift, resulting in an infeasible job or infeasible task. Therefore, the resulting flow

time is greater than the due date, leading to a late schedule and incurring penalty costs. The starting times for

jobs one, two, and three are not t = 0 because it does not result in penalty costs, namely earliness. After the

forward stage was conducted, not all jobs were shifted to follow the infeasible ones. Instead, it aims to consider

the number of penalty costs generated. Task 243 needs to be shifted to t = 35 following task 311, which is

infeasible because it was advanced at t= 26. Even though the resulting flow time for job two gets an earliness

penalty cost of $ 5, compared to the outcome of shifts following an infeasible job, the resulting flow time obtains

a tardiness penalty cost of $ 8. This simply means that not all jobs have to shift to follow the infeasible ones at the

Opsi 2024, Vol. 17, No. 2 Page| 366

forward stage. The job can shift, advance, or stay fixed, but there is a need to consider whether or not it crashes

with the others and machines. When there is no crash, the job can be advanced or fixed at the original time.

6. CONCLUSION

In this study, we discuss a multi-machine problem in job shop scheduling conditions. In the proposed

model, a periodic maintenance activity is inspired by the model of Chen [16]. Several numerical examples are

applied to validate the proposed algorithm using four different priority rules. A combination of priority rules

influences the flow time and total penalty costs.

Internally, supposing the maintenance activities are not scheduled, the proposed model scheduling

results are the same as Andriani [23]. This shows that the proposed model can be used to complete job shop

scheduling with or without preventive maintenance schedules. Externally, the proposed model produces a

higher flow time because time is allocated for maintenance activities.

REFERENCES

[1] K. R. Baker and G. D. Scudder, “Sequencing with earliness and tardiness penalties: A review,” Oper

Res, vol. 38, no. 1, pp. 22–36, 1990, Accessed: Sep. 20, 2024. [Online]. Available:

https://about.jstor.org/terms

[2] H. Van and D. Parunak, “Characterizing the manufacturing scheduling problem,” J Manuf Syst, vol. 10,

no. 3, pp. 241–259, 1991, Accessed: Sep. 20, 2024. [Online]. Available: https://doi.org/10.1016/0278-

6125(91)90037-3

[3] J. Blazewicz, W. Domschke, and E. Pesch, “The job shop scheduling problem: Conventional and new

solution techniques,” Eur J Oper Res, vol. 93, pp. 1–33, 1996, Accessed: Sep. 20, 2024. [Online]. Available:

https://doi.org/10.1016/0377-2217(95)00362-2

[4] A. Arisha, P. Young, and M. El Baradie, “Job Shop Scheduling Problem: An overview,” in International

Conference for Flexible Automation and Intelligent Manufacturing, Dublin, Ireland, 2001, pp. 682–693.

[Online]. Available: https://arrow.tudublin.ie/buschmarcon

[5] G. Li, “Single machine earliness and tardiness scheduling,” Eur J Oper Res, vol. 96, no. 3, pp. 546–558,

1997, Accessed: Sep. 20, 2024. [Online]. Available: https://doi.org/10.1016/S0377-2217(96)00062-8

[6] F. Sivrikaya-S and G. Ulusoy, “Parallel machine scheduling with earliness and tardiness penalties,”

Comput Oper Res, vol. 26, pp. 773–787, 1999, Accessed: Sep. 20, 2024. [Online]. Available:

https://doi.org/10.1016/S0305-0548(98)00090-2

[7] U. Dorndorf, E. Pesch, and T. An Phan-Huy, “Solving the open shop scheduling problem,” Journal of

Scheduling, vol. 4, no. 3, pp. 157–174, 2001, https://doi.org/10.1002/jos.73

[8] E. Mokotoff, “Parallel machine scheduling problems: A survey,” Asia-Pacific Journal of Operational

Research, vol. 18, no. 2, p. 193, 2001, Accessed: Sep. 20, 2024. [Online]. Available:

https://www.proquest.com/scholarly-journals/parallel-machine-scheduling-problems-

survey/docview/204764435/se-2

[9] L. Wang and D.-Z. Zheng, “An elective hybrid optimization strategy for job-shop scheduling

problems,” Comput Oper Res, vol. 28, pp. 585–596, 2001, Accessed: Sep. 20, 2024. [Online]. Available:

https://doi.org/10.1016/S0305-0548(99)00137-9

[10] R. Maheswaran and S. G. Ponnambalam, “An investigation on single machine total weighted tardiness

scheduling problems,” International Journal of Advanced Manufacturing Technology, vol. 22, no. 3–4, pp.

243–248, 2003, https://doi.org/10.1007/s00170-002-1466-0

[11] M. Feldmann and D. Biskup, “Single-machine scheduling for minimizing earliness and tardiness

penalties by meta-heuristic approaches,” Comput Ind Eng, vol. 44, no. 2, p. 307, 2003, Accessed: Sep. 20,

2024. [Online]. Available: www.elsevier.com/locate/dsw

[12] C. Koulamas, “The single-machine total tardiness scheduling problem: Review and extensions,” Eur J

Oper Res, vol. 202, no. 1, pp. 1–7, Apr. 2010, https://doi.org/10.1016/j.ejor.2009.04.007

[13] R. Ruiz and J. A. Vázquez-Rodríguez, “The hybrid flow shop scheduling problem,” Eur J Oper Res, vol.

205, no. 1, pp. 1–18, Aug. 2010, https://doi.org/10.1016/j.ejor.2009.09.024

[14] J. D. Blocher, S. Chand, and K. Sengupta, “Changeover scheduling problem with time and cost

considerations: Analytical results and a forward algorithm,” Oper Res, vol. 47, no. 4, pp. 559–569, 1999,

https://doi.org/10.1287/opre.47.4.559

Opsi 2024, Vol. 17, No. 2 Page| 367

[15] V. Lauff and F. Werner, “Scheduling with common due date, earliness and tardiness penalties for

multimachine problems: A survey,” Math Comput Model, vol. 40, no. 5–6, pp. 637–655, 2004,

https://doi.org/10.1016/j.mcm.2003.05.019

[16] W. J. Chen, “Minimizing total flow time in the single-machine scheduling problem with periodic

maintenance,” Journal of the Operational Research Society Journal of the Operational Research Society, vol.

57, no. 4, pp. 410–415, 2006, Accessed: Sep. 20, 2024. [Online]. Available: www.palgrave-

journals.com/jors

[17] A. Allahverdi, C. T. Ng, T. C. E. Cheng, and M. Y. Kovalyov, “A survey of scheduling problems with

setup times or costs,” Eur J Oper Res, vol. 187, no. 3, pp. 985–1032, Jun. 2008,

https://doi.org/10.1016/j.ejor.2006.06.060

[18] D. N. Pham and A. Klinkert, “Surgical case scheduling as a generalized job shop scheduling problem,”

Eur J Oper Res, vol. 185, no. 3, pp. 1011–1025, Mar. 2008, https://doi.org/10.1016/j.ejor.2006.03.059

[19] C. J. Hsu, C. Low, and C. T. Su, “A single-machine scheduling problem with maintenance activities to

minimize makespan,” Appl Math Comput, vol. 215, no. 11, pp. 3929–3935, Feb. 2010,

https://doi.org/10.1016/j.amc.2009.11.040

[20] A. Lova and P. Tormos, “Combining Random Sampling and Backward-Forward heuristics for

Resource-Constrained Multi-Project Scheduling,” in the Eight International Workshop on Project

Management and Scheduling, Valencia, Spain, 2002, pp. 244–48. Accessed: Sep. 20, 2024. [Online].

Available:

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=53df782f2a2c766146ac43b1a03552a

a7118bef1

[21] H.-M. Wang, P.-C. Chang, and F.-D. Chou, “A hybrid forward/backward approach for single batch

scheduling problems with non-identical job sizes,” Journal of the Chinese Institute of Industrial Engineers,

vol. 24, no. 3, pp. 191–199, 2007, Accessed: Sep. 20, 2024. [Online]. Available: https://doi.org/10.1007/978-

0-387-74905-1_4

[22] A. Udomsakdigool and V. Kachitvichyanukul, “Multiple-colony ant algorithm with forward-backward

scheduling approach for job-shop scheduling problem,” in the Advances in Industrial Engineering and

Operations Research, Boston: Springer, USA, 2008, pp. 39–55. Accessed: Sep. 20, 2024. [Online]. Available:

https://doi.org/10.1007/978-0-387-74905-1_4

[23] V.E. Andriani, "Pengembangan Model Penjadwalan Job Shop untuk Meminimumkan Total Biaya

Tardiness dan Earliness," Thesis (Unpublished), Industrial Engineering Department, Universitas

Pembangunan Nasional Veteran, Yogyakarta, 2011 (in Indonesian).

[24] S.I. Gaol, U. Mauidzoh, and. Astuti, "Analisa Penjadwalan Job Shop untuk Meminimalkan Waktu

Keseluruhan Produk Menggunakan Pendekatan Heuristik Dispatching Rule," Thesis (Unpublished),

Sekolah Tinggi Teknologi Adisutjipto, Yogyakarta, 2012 (in Indonesian).

[25] L. Mönch., R. Unbehaun., & Y.I. Choung., “Minimizing earliness–tardiness on a single burn-in oven

with a common due date and maximum allowable tardiness constraint”. Or Spectrum, 28, 177-198,

(2006).

	1. INTRODUCTION
	2. LITERATURE REVIEW
	3. MODEL DEVELOPMENT
	4. NUMERICAL EXAMPLES
	5. RESULTS AND DISCUSSION
	6. CONCLUSION
	REFERENCES

