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1. INTRODUCTION 

Scheduling is a plan for arranging job sequences and allocating resources, both time and facilities, to each 

operation that must be completed [1]. The essence of the scheduling objective function is to minimize the total 

processing time (makespan). In addition, scheduling based on machine environment is divided into several 

types. These include single and multiple machines, flow, job, and open shops [2–4]. Li [5], Sivrikaya-Serifoglu 

& Ulusoy [6], and Dorndoft et al. [7] developed a production scheduling optimization algorithm that can 

handle NP-Hard problems while taking time and resource constraints into account. They employed branch 

and bound algorithms and genetic algorithms to manage the complexity, aiming to minimize penalty costs 

and delays. We widely use heuristic and metaheuristic algorithms for scheduling because they can overcome 

the limitations of mathematical models or exact algorithms that are too slow for large scales [8–10]. Some 

studies use a combination of exact algorithms and heuristics to solve complex scheduling problems with the 

aim of optimizing time or cost criteria [11–13]. 
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A job shop is a manufacturing environment where new ones often have different work routes or 

operations [2–3]. Job shop scheduling is characterized by scheduling n jobs on m machines, each comprising 

an unidentical machine sequence or routing. The simple form of this model assumes that each job only passes 

through a machine once on its route to the process. However, other models allow each job to pass through 

similar machines more than once on its route.  

Production scheduling is generally based on the assumption that resources are always available. 

However, in reality, these resources, including machines, equipment, and facilities that support the production 

process, have limited availability of resources [14–16]. For example, when the machine is interrupted during 

the production process. These conditions are improved by scheduling and accomplishing maintenance 

activities to reduce the disturbance level on the machine. This causes the job process to take a long time, 

resulting in penalties such as tardiness and earliness costs. The earliness penalty occurs when the work is 

completed before the specified time limit, thereby saving costs [17]. Meanwhile, tardiness occurs because the 

work was not completed within the predetermined time limit, which leads to a penalty [10–12]. Pham & 

Klinkert [18] and Hsu [19] emphasize makespan reduction as the main priority in scheduling, even though it 

is applied in different sectors, namely healthcare services and the manufacturing industry. 

The issue of scheduling several jobs on a single machine was developed by Li [5] and parallel machine 

by Sivrikaya-Şerifoǧ lu & Ulusoy [6] to minimize the sum of earliness and tardiness costs. Chen [16] researched 

a single machine that addressed the issue of machine unavailability in scheduling. The investigation entailed 

scheduling problems by several time intervals as a maintenance activity. It is designed for a single machine 

and focuses on improving the periodic maintenance schedule. Andriani [23] developed a job shop scheduling 

model to minimize penalty costs without considering disruptions to the production process. Therefore, the 

proposed model is designed based on this model by considering the maintenance activities schedule. 

 

2. LITERATURE REVIEW 

The earliness penalty occurs when the work is completed before the specified time limit, thereby saving 

costs. Meanwhile, tardiness occurs because the work was not completed within the predetermined time limit, 

which leads to a penalty. Baker and Scudder [1] formulated the earliness and tardiness model as follows. 

𝐸𝑖 = max(0, 𝑑𝑖 − 𝐶𝑖) = (𝑑𝑖 − 𝐶𝑖)
+ (1) 

𝑇𝑖 = max(0, 𝐶𝑖 − 𝑑𝑖) = (𝐶𝑖 − 𝑑𝑖)+ (2) 

𝑓(𝑆) = ∑(𝛼𝐸𝑖 + 𝛽𝑇𝑖)

𝑛

𝑖=1

 (3) 

where, 

Ei : Earliness on job i 

di : Due date on job i 

Ci : Completion time on job i 

Ti : Tardiness on job i 

α : Earliness penalty unit cost 

β : Tardiness penalty unit cost 

f(s) : Function of on S schedule 

 

Andriani [23] developed a job shop scheduling using the priority dispatching algorithm. The algorithm 

used a forward and backward-forward scheduling approach to minimize the total earliness and tardiness 

costs.  It is assumed that no other activities can interrupt the production process. The notations used in this 

model will be employed to develop a proposed algorithm and they are presented below. 

 

St : a collection of tasks that are ready to be scheduled at step t (iteration step) 

Pst : a partial schedule that contains scheduled operations 

Cj : completion time of the j-th operation 

Rij : start time of the i-th job and the j-th operation 

R* : the fastest time an operation can be started (R* = Cj + tij) 
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m* : machine where R* can be realized 

Noj : the next operation of the job 

Nom : the next operation of the machine 

jobStart  : operation start time which is constrained by the previous operation of the job 

mcStart : operation start time which is limited to the previous operation of the machine 

startTime : operation start time of the old schedule 

endTime : operation finish time of the old schedule 

newStart : operation start time of the new schedule 

newEnd : operation finish time of the new schedule 

devSt : deviation of the start time between the old and new schedules 

Aff : set of operations affected after rescheduling with new start and finish times 

O : affected set of operations 

I : index of aff 

G : index of O 

 

The calculation stages of this model realized with the forward approach, are described in the following 

algorithm. 

Step 1: Initiation Stage  

Identification of the number and routing of jobs. 

Step 2: Set t = 1, Cj = 0, and Pst = 0 (Pst is a partial schedule containing scheduled operations).  

Set St (St is the set of operations ready to be scheduled) is equal to all operations without 

predecessors. 

Step 3: For each operation in St that requires machine m where Rij is performed, select task ij. 

 In model 1: Select task ij with the largest remaining processing time, taking into account the 

effect of tij on task ij (LPTR). 

 In model 2: Select task ij with the largest remaining processing time without considering the 

effect of tij on task ij (LPTR+1). 

Step 4: The selected task ij will have Rij = R* where R* equals m*. 

a. Is task ij > 1? 

When selecting whether task ij contains St and m* where R* is greater than one?  

If not, then proceed to Step 5. 

b.  If yes, select the ij task with the Short Processing Time (SPT) priority rule, and proceed to 

Step 5. 

c. On Step 4b, is task ij > 1? 

When selecting Step 4b, is task ij in St and accomplished in m* where R* is greater than one? 

If not, then it proceeds to Step 5. 

d. If yes, select the ij task with the First Come First Serve (FCFS) priority rule, and proceed to 

Step 5. 

Step 5: Proceed to the next step by creating a Pst+1 partial schedule and refine the data set by: 

a. Enter the selected task ij on Pst+1. 

b. Eliminate the selected task ij from St and form St+1 by adding its successor when all of its 

predecessor tasks have been scheduled. 

c. Add t to 1. 

d. Update the available time for each machine. 

e. Fix Cj for all task ij in St+1, namely: 

 (a) For task ij, which is the successor of the selected task, 

Cj = max (R*, available time in machine k). 

(b) For task ij that has not been selected at the previous Step t, 

Cj = max (Cj at Step t before, available time in machine k) 

Step 6: When there are still unscheduled tasks, proceed to Step 3, otherwise stop. 

 

The following steps describe the calculation stages for the Andriani [23] algorithm, realized with the 

backwards-forward approach. 
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Step 1: Initiation Stage  

Identification of the number and routing of jobs. 

Step 2: Set t = 1 and Pst = 0 as well as determine St for each job starting from the most recent operation 

where Rij on the last task ij = di.  

Step 3: For each operation in St that requires machine m where Rij is performed, select task ij. 

In model 1: Select task ij with the largest remaining processing time taking into account tij in task 

ij (LPTR). 

In model 2: Select task ij with the largest remaining processing time without taking into account 

tij in task ij (LPTR+1). 

Step 4: The selected task ij will have Cj = C* where C* equals m*. 

a. Is task ij > 1? 

At the time of selection, is task ij in St and m* including C* greater than one?  

If not, then proceed to Step 5. 

b. If yes, then select the ij task with the Short Processing Time (SPT) priority rule, and proceed 

to Step 5. 

c. On Step 4b, is task ij >1? 

At the time of selecting Step 4b, is task ij in St and requires m* where C* is performed more 

than once?  

If not, then proceed to Step 5. 

d. If yes, then select the ij task with the First Come First Serve (FCFS) priority rule. Proceed to 

Step 5. 

Step 5: Proceed to the next step by creating Pst+1 partial schedule and refine the data set by: 

a. Enter the selected task ij in Pst+1. 

b. Eliminate the selected task ij from St and form St+1 by adding its predecessor if all of its 

successor tasks have been scheduled. 

c. Add t with 1. 

d. Update the available time for each machine. 

e. Fix Rij for all task ij in St+1, namely: 

(a) For task ij, which is the predecessor of the selected task, 

Rij = min (C*, available time on machine k). 

(b) For task ij that has not been selected at the previous Step t, 

Rij = min (Rij at Step t before, available time on machine k). 

Step 6: If there are still unscheduled tasks, proceed to Step 3, then stop. 

Step 7: If the scheduling results are infeasible, advance all infeasible tasks at point t = 0. 

Step 8: Set i = 1, g = 1, completion time = 0, devSt = 0, O = Φ, jobStart = mcStart = 0 for all operations. 

Step 9: O[g] as current operation, jobStart = mcStart = 0 for infeasible job. Define: 

Current newStart = max (jobStart, mcStart) 

Current newEnd = Current newStart + tso 

Step 10: If the current job does not match the affected operating group in aff go to Step 11 and if not, then 

reset aff (v) to Step 12. 

Step 11: Define: 

newStart aff (v) = current newStart + (Cj the biggest infeasible job x (-1)). Proceed to Step 12. 

Step 12: Calculate newEnd aff (v) = newStart aff (v) + tij 

Step 13: Set aff[i] = current operation; i add with 1. 

Step 14: Define noj, if yes, then: 

O[g] = noj and jobStart dari O[g] = current newEnd 

Current newEnd = startTime + (Cj the biggest infeasible job x (-1)). Proceed to Step 15. 

Step 15: Calculate newEnd aff (v) = current newEnd + tij 

Step 16: Define nom, if yes, then: 

O[g] = nom and mcStart from O[g] = current newEnd 

Current newEnd = startTime + (Cj the biggest infeasible tasks x (-1)). Proceed to Step 17. 

Step 17: Calculate newEnd aff (aff) = current newEnd + tij 

Step 18: Subtract the current operation from set O and add a new member O from Step 13. 
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Step 19: If O = Ø, hence, stop, if not, search new noj and nom from the current available set O. 

 

Chen [16] discusses single-machine scheduling considering limited machine availability due to the 

periodic maintenance schedule. There is a time interval T between two consecutive maintenance activities. A 

maintenance activity requires an amount of time t for execution (Figure 1). 

 

 
 

Figure 1. Scheduling with maintenance periods on a single machine [16] 

Description: 

J[j] : j-th job 

M : maintenance time 

T : time interval between two maintenance periods 

t : amount of time to perform one maintenance 

 

Furthermore, Chen [16] formulates the problem to minimize the total flow time. The total flow time of all 

jobs in schedule S is modeled as follows. 

𝑓(𝑆) =  ∑ 𝐶𝑖

𝑛

𝑖=1

 (4) 

 

3. MODEL DEVELOPMENT 

The differences among the models from Chen [16], Andriani [23], and the proposed one are shown in 

Table 1. Chen [16] developed a method to minimize total flow time in a scheduling system that considers 

periodic maintenance and non-resumable jobs. The proposed heuristic algorithm shows results close to 

optimal with an average error of only 0.57%. This algorithm is much faster compared to the branch and bound 

algorithm, making it suitable for large-scale problems. Meanwhile, Andriani [23] aimed to develop a job shop 

scheduling algorithm to minimize the total costs of earliness and tardiness. It modified the algorithm by 

providing different priority rules.  

 

Table 1. The difference among the models  

 

No. Description  Chen [16] Andriani [23] Proposed Model 

1 Machine 

environment 

Single machine Job shop Job shop 

2 Assumptions 

used 

There is a schedule 

of maintenance 

activities during 

the production 

process. 

No activity can 

interrupt the 

production 

process or 

activities 

There is a schedule 

of maintenance 

activities during the 

production process 

 

The following assumptions were employed: 

1. Scheduling is conducted for processes that can be stopped (manufacturing) 

2. Set-up time is not affected by the work order, therefore, it can be considered part of the processing time. 

3. Transportation time is negligible 

4. Job starts at t=0 (forward approach) 

5. Static job arrival pattern 

6. Penalty costs are dissimilar 

7. Each job has a different due date 

8. The generated process determines the schedule of maintenance activities 
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9. Scheduled maintenance activities are simultaneously performed on each machine 

10. At the time of the scheduled maintenance activity, the machine was not operating. 

 

The proposed model modifies the basic one designed by Andriani [23]. Figure 2 shows that the proposed 

model is in the form of a job shop flowchart. 

 

 
 

Figure 2. The job shop flowchart 

 

The triplet notation is applied in the study, which notation consists of (i, j, k), namely i indicates the job 

number, j indicates the operation sequence, and k indicates the machine used. The additional notations used 

in the proposed algorithm are: 

t :  iteration step 

n : number of jobs 

tij : processing time of the i-th job and the j-th operation 

Cij :  completion time of the i-th job and the j-th operation 

C* : the fastest time the operation can be completed 

Px : maintenance activities that have been scheduled by x 

  (maintenance period, x=1, 2, …, x+1) 

 k : machine number 

di : i-th due date  

Irc : time interval for job execution that can be scheduled  

 

The calculation stages of the proposed model with a forward approach are described in the following 

algorithm. 

Step 1: Initiation stage 

Identify the number and routing of jobs 

Step 2: Set t = 1, Rij = 0, and Pst = 0 (Pst is a partial schedule containing scheduled operations). Set St (St is 

the set of operations ready to be scheduled) is equal to all operations without predecessor. 

Step 3: For every operation in St that requires an m machine where Cij is performed, select task ij. 

In model 1: Select the task ij with the largest remaining processing time that considers tij in the 

task ij (LPTR). 

In model 2: Select task ij with the largest remaining processing time without considering tij in 

the task ij (LPTR+1) 

Step 4: a. If there is only one task ij selected, task (ij = 1), then schedule the task, 

b. If the number of selected tasks ij is more than one task (ij > 1), then select task ij with the SPT 

priority rule (min tij), 

c. If there is still a task ij that has (min tij) at the same price (min tij > 1), then select the task with 

FCFS priority rule. 

Step 5: a. If the task ij selected has Rij + tij = Cij ≤ Px (maintenance activity start schedule), then schedule 

it before Px, 
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b. If the task ij selected has Rij + tij = Cij > Px (maintenance activity start schedule), then schedule 

it after Px, 

Task ij selected will have Cij = C* where C* will have m*. 

Step 6: Proceed to the next step by creating a partial schedule Pst+1 and refine the data set as follows: 

a. Input the selected task ij at Pst+1. 

b. Remove the selected task ij from St and form St+1 by adding its successor if all its predecessor 

tasks are already scheduled except for the last task. 

c. Add t with 1 

d. Update the available time for each machine 

e. Fix the Rij for all task ij in St+1, namely: 

1. For which is the successor of the selected task ij,  

Rij = max (C*, available time at machine k). 

2. For task ij that has not been selected in the previous step t, 

 Rij = max (Rij at step t before, available time at machine k). 

Step 7: If there are still unscheduled tasks, perform Step 3, otherwise stop. 

 

The flowchart of the scheduling algorithm of the proposed forward approach model can be seen in Figure 

3. 

 

Start

Identify the 
number 

and routing 
of jobs

Set t= 1, Rij= 0, and Pst= 0.
Set St (St is the set of 

operations ready to be 
scheduled) is equal to all 

operations without 
predecessor.

For every operation in 
St that requires an m 
machine where Cij is 

performed, 

Select the task ij 
based on rules  LPTR 

(model 1) and 
LPTR+1 (model 2)

The number of task 
ij = 1?

Select task ij with the 
SPT priority rule

Rij+tij=Cij ≤ Px

(min tij > 1) ?

Select the task with 
FCFS priority rule

Schedule it after Px

Schedule it before Px

Add t with 1

A

Proceed to the next 
stage by creating a 

partial schedule Pst+1.

Input the selected task 
ij at Pst+1.

B

A

Update the available 
time for each 

machine

Fix the Rij for all task 
ij in St+1, 

Are there still 
unscheduled tasks

Stop

B

no

yes

no

no

yes

yes

no

yes

 
 

Figure 3. Flowchart of the proposed forward approach model 
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The calculation stages for the proposed model with the backward-forward approach are described in the 

following algorithm. 

Step 1: Initiation Stage 

Identify the number and routing job. 

Step 2: Set t = 1 and Pst = 0 and determine St of each job starting from the most recent operation where 

Cij at last task ij = di. 

Step 3: For each operation in St that requires m machine where Rij is performed (Rij = di – tij), select task 

ij. 

In model 1: Select the task ij that has the largest remaining processing time that considers tij in 

the task ij (LPTR) 

In model 2: Select task ij, which has the largest remaining processing time without considering 

tij in task ij (LPTR+1). 

Step 4: a. If there is only one task ij selected, task (ij = 1), then schedule the task 

b. If the number of selected tasks ij is more than one task (ij > 1), then select task ij with the SPT 

priority rule (min tij) 

c. If there is still a task ij that has (min tij) at the same price (min tij > 1), then select the task with 

FCFS priority rule. 

Step 5: Schedule the selected ij task before the possible Px 

The selected task ij will have an Irc that has considered the Px schedule to have R*, with m*. 

Step 6: Proceed to the next step by creating a partial schedule Pst+1 and refine the data set by: 

a. Input the selected task ij at Pst+1. 

b. Remove the selected task ij from St and form St+1 by adding its successor if all its predecessor 

tasks are already scheduled except for the last task. 

c. Add t with 1 

d. Update the available time for each machine 

e. Fix the Rij for all task ij in St+1, namely: 

(a) For which is the successor of the selected task ij, Rij = max (C*, available time at machine 

k) 

(b) For task ij that has not been selected in the previous step t, Rij = max (Rij at step t before, 

available time at machine k). 

Step 7: If there is still an unscheduled task, perform Step 3 and then stop.  

Step 8: If the scheduling result is infeasible, advance all infeasible tasks to the point of t = 0. 

Step 9: Set i = 1, g = 1, finish time = 0, devSt = 0, O = Φ, jobStart = mcStart = 0 for all operations. 

Step 10: O[g] as the current operation, jobStart = mcStart = 0 for infeasible jobs. 

Determine: 

newStart now= max (jobStart, mcStart) 

newEnd now = newStart now+ tso 

Step 11: If the current job does not match the set of affected operations in the aff set, move to Step12, if 

not then reset aff (v) to Step 13. 

Step 12: Determine: 

newStart aff (v)= newStart now+ (Cj job the largest infeasible x (-1)) 

Proceed to Step 13 

Step 13: Calculate newEnd aff (v) = newStart aff (v) + tij. Then move to Step14 

Step 14: If newEnd aff(v) ≤ Px (maintenance activity start schedule), then schedule before Px 

If newEnd aff(v) > Px (maintenance activity start schedule), then schedule before Px 

Step 15: Set aff[i] = current operation; i add with 1. 

Step 16: Determine noj, if it exists then: 

O[g] = noj and jobStart from O[g] = newEnd now, 

newEnd now= startTime + (Cj job the largest infeasible x (-1)), 

Proceed to Step 17. 

Step 17: Determine newEnd aff (v) = newEnd now + tij.  

Check the Step 14, Move to the Step 18 

Step 18: Determine nom, if it exists then: 
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O[g] = nom and mcStart from O[g] = newEnd now 

newEnd now= startTime + (Cj job the largest infeasible x (-1)).  

Proceed to Step 19. 

Step 19: Calculate newEnd aff (aff) = newEnd now + tij, 

Check the Step 14, Move to the Step 20 

Step 20: Subtract the current operation from set O and add the new member O from Step 15. 

Step 21: If O = Ø, then stop, otherwise find new noj and nom from the current set O. 

 

4. NUMERICAL EXAMPLES 

Simulations were conducted for six cases, with details of the total jobs, machines, and penalty costs used 

(Table 2). The cost of earliness and tardiness is $ 1/unit time and $ 2/unit time, respectively. For each machine, 

maintenance activity needs a certain amount of time t = 2 units of time. Whereas, there is a time interval of T 

= 8 units of time between two consecutive maintenance periods [16]. 

 

Table 2. The case details for simulations 

 

Cases Number of jobs Number of machines Source 

I 3 4 Andriani [23] 

II 3 5 Andriani [23] 

III 4 3 Generated data 

IV 5 3 Generated data 

V 4 5 Generated data 

VI 3 3 Gaol et al. [24] 

 

The due date of jobs 1, 2, 3, 4, and 5 are 38, 36, 37, 38, and 37 units of time, respectively. The process time 

data (Table 3) and machine routing (Table 4) used for each case are shown below. 

 

Table 3. The process time data 

 

CASE I Operation j-th   CASE II Operation j-th 

Job i-th 1 2 3 4   Job i-th 1 2 3 4 5 

1 8 7 8 6   1 8 7 8 6 5 

2 5 7 8 7   2 5 7 8 7 8 

3 6 5 6 6   3 6 5 6 6 7 

                      
CASE III Operation j-th    CASE IV Operation j-th   
Job i-th 1 2 3    Job i-th 1 2 3   

1 7 6 8    1 8 7 5   
2 6 8 5    2 5 7 8   
3 8 5 7    3 6 5 6   
4 5 7 6    4 5 6 7   

       5 8 5 6   
                       

CASE V Operation j-th  CASE VI Operation j-th   
Job i-th 1 2 3 4 5  Job i-th 1 2 3   

1 5 7 8 6 5  1 5.65 5.70 3.18   
2 6 5 7 8 7  2 11.17 11.41 6.03   
3 8 7 6 8 6  3 6.25 3.35 -   
4 6 5 7 6 8        

 

Each of the cases ais solved using two different combinations of priority rules, namely Least Processing 

Time Remaining (LPTR) – Shortest Processing Time (SPT) – First Come First Serve (FCFS) and LPTR+1 – SPT – 

FCFS, by employing two scheduling approaches, namely forward and backward-forward approach [5,21–

22,25]. 
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Table 4. The machine routing data 

 

CASE I Operation j-th   CASE II Operation j-th 

Job i-th 1 2 3 4   Job i-th 1 2 3 4 5 

1 3 1 4 2   1 3 1 4 5 2 

2 2 1 4 3   2 2 1 5 3 4 

3 1 3 2 4   3 1 3 2 4 5 

         

CASE III Operation j-th    CASE IV Operation j-th   

Job i-th 1 2 3    Job i-th 1 2 3   
1 2 1 3    1 3 1 3   
2 1 2 3    2 2 3 1   

3 2 3 1    3 1 3 2   

4 3 1 2    4 1 2 3   

       5 2 1 2   

             

CASE V Operation j-th  CASE VI Operation j-th   

Job i-th 1 2 3 4 5  Job i-th 1 2 3   

1 3 4 2 5 1  1 1 2 3   

2 2 1 5 4 3  2 2 1 3   

3 4 5 4 1 3  3 1 3 -   

4 1 3 2 5 4        

 

5. RESULTS AND DISCUSSION 

Table 5 shows that each case with various jobs and machines has different penalty costs. However, 

increasing the number of machines and jobs results in a higher total penalty cost. In cases I (three jobs, four 

machines) and II (three jobs, five machines), the job will have a longer routing or processing approach. 

Furthermore, the recapitulation results of all cases in the proposed model are shown below. 

 

Table 5. Recapitulation of total penalty costs 
 

Case 
Forward Approach Backward-forward Approach 

LPTR – SPT – FCFS LPTR+1 – SPT – FCFS LPTR – SPT – FCFS LPTR+1 – SPT – FCFS 

I 18.0 18.0 17.0 17.0 

II 64.0 64.0 64.0 64.0 

III 29.0 29.0 22.0 22.0 

1V 42.0 52.0 35.0 55.0 

V 60.0 54.0 82.0 54.0 

VI 67.2 30.5 28.8 28.7 

 

When the number of jobs and machines increases due to lower total penalty costs, such as in Cases II 

(three jobs, five machines) and V (four jobs, five machines), the total penalty cost generated in Case V is lower 

than in Case II. In contrast to Cases III (four jobs, three machines) and IV (five jobs, three machines), adding 

the same number of jobs and machines results in a higher total penalty cost. This is because the number of 

machines is less than the number of jobs.  

A combination of different priority rules affects the incidence of penalty costs. This is because the order 

of the job process is carried out according to their respective priority rules. However, this is similar to the 

comparison of Cases II and V in the backward-forward approach (LPTR - SPT - FCFS), which resulted in a 

higher total cost. Cases II and V resulted in $64 and $82, respectively. This shows that the order of work priority 

affects the resulting penalty costs.  

Table 6 shows that the scheduling results of the proposed model are higher than Andriani [23]. This is 

because the proposed scheduling model has a stipulated time used for the maintenance activities of each 
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machine. With maintenance time, the job is completed within a longer period. Figure 4 shows the difference 

in the Gantt chart between the results of the proposed and Andriani's [23] models. The differentiated Gantt 

chart is a backward-forward approach (LPTR+1 - SPT - FCFS) used in Case I to represent the results obtained. 

The time used for maintenance activities increases the flow time.  

 

Table 6. The comparison of results between Andraini [23] and the proposed models 

 

Model Case 
Forward Approach Backward-forward Approach 

LPTR – SPT – FCFS LPTR+1 – SPT – FCFS LPTR – SPT – FCFS LPTR+1 – SPT – FCFS 

Andriani 

[23] 

I 13.0 13.0 - - 

II 22.0 22.0 60.0 64.0 

Proposed 
I 18 18 17 17 

II 64 64 64 96 

 

 
 

Figure 4. Gantt chart differences in the backward-forward approach in Case I 

 

Figure 5 shows scheduling after the backward-forward stage has been conducted. Scheduling carried out 

after the backward stage leads to an infeasible result. Therefore, it is carried out in the forward stage, and the 

schedule becomes feasible. In this Gantt chart, the resulting flow time can be suitable because, during the job 

process, none was allocated to the maintenance activities, hence, the machine needs to be available at all times.  

 

 
 

Figure 5. The application of a backward-forward approach to produce a feasible task 

 

The forward stage causes a shift, resulting in an infeasible job or infeasible task. Therefore, the resulting flow 

time is greater than the due date, leading to a late schedule and incurring penalty costs. The starting times for 

jobs one, two, and three are not t = 0 because it does not result in penalty costs, namely earliness. After the 

forward stage was conducted, not all jobs were shifted to follow the infeasible ones. Instead, it aims to consider 

the number of penalty costs generated. Task 243 needs to be shifted to t = 35 following task 311, which is 

infeasible because it was advanced at t= 26. Even though the resulting flow time for job two gets an earliness 

penalty cost of $ 5, compared to the outcome of shifts following an infeasible job, the resulting flow time obtains 

a tardiness penalty cost of $ 8. This simply means that not all jobs have to shift to follow the infeasible ones at the 
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forward stage. The job can shift, advance, or stay fixed, but there is a need to consider whether or not it crashes 

with the others and machines. When there is no crash, the job can be advanced or fixed at the original time. 

 

6. CONCLUSION 

In this study, we discuss a multi-machine problem in job shop scheduling conditions. In the proposed 

model, a periodic maintenance activity is inspired by the model of Chen [16]. Several numerical examples are 

applied to validate the proposed algorithm using four different priority rules. A combination of priority rules 

influences the flow time and total penalty costs. 

Internally, supposing the maintenance activities are not scheduled, the proposed model scheduling 

results are the same as Andriani [23]. This shows that the proposed model can be used to complete job shop 

scheduling with or without preventive maintenance schedules. Externally, the proposed model produces a 

higher flow time because time is allocated for maintenance activities.  
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