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1. INTRODUCTION 

In competitive market environment, strategic pricing plays a critical role in determining the success of 

businesses. The strategy for determining product selling prices, often known as product pricing, should 

consider the external factors such as customers dynamics and concentration [1]–[4], competitors [5]–[8] and 

both customers and competitors [9]. The dynamic interactions between companies will make product pricing 

strategies complicated because they will change from time to time according to circumstances and it 

necessitates sophisticated, particularly in markets characterised by the presence of both leader and follower 

players [10]. One such robust method that can be used in this situation is Stackelberg Game Theory (SGT) [11-

13], which models the leader (or, major) and follower (or, minor) player dynamics prevalent in many 

industries [14]–[16]. The hierarchical structure which adopted in SGT is particularly relevant in markets where 
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one player has a significant market power advantage in situations where consumers easily move to-and-from 

one player to another. 

Products pricing by utilising SGT can be categorised as strategic pricing, which enables both leader and 

follower players to dynamically set the selling price of their products in shared market [17], [18] and it will 

cause a corresponding adjustment in the market [19]. Other player can then use this market response as a 

parameter to adjust the selling price of the products. Therefore, all players will have the opportunity to 

increase their sales by maximising the market response to their products when other player make 

modifications to their techniques for determining product selling price.  

Studies about SGT for product pricing have been investigated by previous researhcers, and several 

adjustments have been incorporated to the SGT in order to solve the cases. Chua et al [20] have applied SGT 

for not only product pricing, but also determining production and ordering quantity of a supply chain. The 

dynamics factors namely prices and lead time markets were also considered when optimising the total profit 

of all of the chains. Sometime, companies in the competitive market doesn’t know the strategy applied by the 

competitors. In that situation, a company will determine the pricing strategy based on bounded rationality, 

however, after that, the company can start to predict the strategy implemented by the competitor. Study about 

the implementation of SGT in that condition has been carried out by Khanlarzade and Farughi [21]. Object of 

that study in a supply chain for deteriorating products. After proposing a Bayesian conjugate pair to solve the 

Stackelberg game with bounded rationality, they also provided an algorithm for comparison under the 

assumption that the follower can completely observe the leader's strategy. 

Implementation  of SGT in a supply chain optimisation has conducted by Narang et al [22] that managing 

retired electric vehicle (EV) batteries by developing a closed-loop supply chain with four mixed-channel 

recycling models under a carbon cap-trade and reward-penalty mechanism. The proposed SGT optimised the 

model by considering the influence of carbon trading prices, reward-penalty intensity, and competition 

coefficients on supply chain decisions. The results highlight that the recycling models do not alter the forward 

supply chain decisions, therefore it has positive impact to the manufacturer on reducing the recycling load 

and increasing the profitability. Another similar study about application of SGT on sustainable supply chain 

has been conducted by Pakseresht et al [23]. This study focuses on Green Product Families (GPFs) and their 

associated green supply chains (GSCs), addressing the critical need for sustainable optimisation in response 

to customer demands, governmental regulations, and competitive pressures. The model in that study 

simultaneously considers economic, environmental, and social criteria to optimise GPF design and GSC 

configuration. The leader problem seeks to maximise profit and product greenness by selecting optimal 

components, modules, and product variants, while the follower problem minimises GSC costs with 

environmental considerations like carbon emissions. The problem is modeled as a bi-level multi-objective 

linear programming problem (B-MOLP) and solved with a novel bi-level multi-objective particle swarm 

optimisation algorithm (B-MOPSO). Early version of that model also can be found from previous study [24], 

and several applications of SGT for supply chain optimisation can be found in [25]–[27]. 

Usually, SGT model is developed as an optimisation model, hence, it requires optimisation algorithm to 

solve. SGT model always simulates leader-follower interactions, therefore, it necessitates a large number of 

parameters and decision variables. Consequently, the evolution-based optimisation algorithm was widely 

implemented by previous reserahcers [28]. A study about joint decision-making in dyadic supply chains 

involving a manufacturer and an independent retailer, under the constraints of carbon emission taxes and 

subsidies imposed by local governments has been carried out by previous researcher [29]. The key decisions 

considered in that study are manufacturer's technology selection, production quantities, wholesale price, and 

retailer's retail price. The authors develop a bilevel 0–1 mixed nonlinear programming model to represent the 

problem, which becomes a complicated model. The resulted model then been solved using a nested genetic 

algorithm (NGA). Similar study that also used NSG for SGT-based optimisation of a supply chain has been 

carried out by Zhang et al [30]. 

Study by Kwong et al [31] shows that NGA is crucial because of hierarchical structure of the problem and 

the multitude of parameters and decision variables involved, such as product attribute settings, pricing, and 

market shares. The study considers four contract types which are wholesale price (WP), revenue sharing (RS), 

quantity discount (QD), and retail price maintenance (RPM) to capture diverse coordination mechanisms. 

Generally, the reasons of using NGA for SGT optimisation are the the solution generated by GA that 
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optimising the leader company considers the quality solution generated by another GA that optimising the 

follower company, sometime, it called as bi-level optimisation. 

The use of bi-level optimisation model will cause non-convex, non-dfifferentiable and discontinuous 

solution spaces, making the problem computationally demanding [32]. Occasionally, the high level of model 

complexity will make it impracticable. Novelty of this study lies in overcoming this disadvantages by 

combining the optimisation model of the leader and follower companies and will be optimised together using 

GA. GA was selected as the optimisation algorithm due to its capacity to resolve complex problems, including 

combinatorial optimisation [33] and real number optimisation [34]. In addition, to the best of our knowledge, 

there has been no previous studies that has tried to validate the results of the proposed selling price of products 

resulting from SGT optimisation. This validation will be a trade-off between extreme optimum results and 

feasible solutions. The balance between optimisation and realism is largely absent in the previous literature. 

 

2. METHODS 

2.1. Problem Descriptions 

The study was carried out at two batik retailers in Indonesia that offer identic batik clothing items. One 

of the retailer is a leader batik retailer, while the remaining retailer is follower retailer located in the vicinity 

of the leader retailer. The selection of batik products was based on their status as one of Indonesia's original 

commodities and their significant sales performance. Therefore, enhancements to the batik supply chain 

system, encompassing the retailers as well, will yield a substantial economic effects to all of the involved 

supply chain players. 

The focus of this study is on the 5 key batik clothes in the investigated leader an follower retailers. The 

leader retailer has the autonomy to establish the predetermined selling price for all of the products. 

Nevertheless, calculating the selling price of the products still considers the selling price of the follower retailer 

and its market shares. The batik cloth market dynamics arise when the leader retailer establishes an excessively 

high selling price, prompting numerous customers to shift their purchases to the follower retailer. 

Consequently, the leader retailer's profits will decline. During periods of high demand, the follower retailer 

are inclined to increase prices, prompting the leader retailer to adjust their prices in order to attract back the 

customers. Under such circumstances, the profitability of the follower retailer will diminish. The primary 

objective of this study is to ascertain the optimum selling price for both the leader and follower retailers in 

order to maximise their profitability. This will be achieved by analysing the revenue and cost functions of both 

retailers. Bellow are the decision variables, parameters and indices used to model the system. 

 

Indices: 

p : product index 

t : time index 

c : chromosome index 

 

Parameters: 

𝑆𝐼𝐿𝑝𝑡 : seasonal index of product-p at time-t of the leader player 

𝑆𝐼𝐹𝑝𝑡 : seasonal index of product-p at time-t of the follower player 

SPLcp : current selling price of product-p of the leader player 

SPFcp : current selling price of product-p of the follower player 

𝐷𝐿𝑝𝑡 : historical demand of product-p at time-t of the leader player 

𝐷𝐹𝑝𝑡 : historical demand of product-p at time-t of the follower player 

𝐻𝑆𝐿𝑝𝑡 : historical selling price of product-p at time-t of the leader player 

𝐻𝑆𝐹𝑝𝑡 : historical selling price of product-p at time-t of the follower player 

𝑃𝐶𝐿𝑝𝑡 : total replenishment cost of product-p at time-t of the leader player 

𝑃𝐶𝐹𝑝𝑡 : total replenishment cost of product-p at time-t of the follower player 

P : number of product considered 

T : number of periods considered to develop the model 

G : number of generation of the GA 

p_size : population size of the GA 

pc : crossover probability of the GA 
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pm : mutation probability of the GA 

𝑤𝑝 : weight of the total profit 

𝑤𝑓 : weight of the MSE 

 

Variables: 

𝐷𝐹𝐿𝑝𝑡 : demand forecast of product-p at time-t of the leader player 

𝐷𝐹𝐹𝑝𝑡 : demand forecast of product-p at time-t of the follower player 

𝑀𝑆𝐸𝐿𝑝 : Mean Squared Error of product-p forecast of the leader player 

𝑀𝑆𝐸𝐹𝑝 : Mean Squared Error of product-p forecast of the follower player 

𝑓𝑖𝑡𝑐 : fitness of chromosome-c 

TPL : total profit leader player 

TPF : total profit follower player 

TP : total profit 

TPLc : current total profit leader player 

TPFc : current total profit follower player 

TPc : current total profit 

 

Decision variables: 

𝑆𝑃𝐿𝑝 : selling price of the leader player for product-p 

𝑆𝑃𝐹𝑝 : selling price of the minor player for product-p 

𝛼𝐿𝑝 : forecasting base value of product-p of the leader player 

𝛼𝐹𝑝 : forecasting base value of product-p of the follower player 

𝛽𝐿𝑝 : effect of the 𝑆𝑃𝐿𝑝𝑡 to the forecasting of product-p of the leader player 

𝛽𝐹𝑝 : effect of the 𝑆𝑃𝐿𝑝𝑡 to the forecasting of product-p of the follower player 

𝛾𝐿𝑝 : effect of the 𝑆𝑃𝐹𝑝𝑡 to the forecasting of product-p of the leader player 

𝛾𝐹𝑝 : effect of the 𝑆𝑃𝐹𝑝𝑡 to the forecasting of product-p of the follower player 

𝛿𝐿𝑝 : effect of the 𝑆𝐼𝐿𝑝𝑡 to the forecasting of product-p of the leader player 

𝛿𝐹𝑝 : effect of the 𝑆𝐼𝐹𝑝𝑡 to the forecasting of product-p of the follower player 

𝜑𝐿𝑝 : variable replenishment cost of product-p of the leader player 

𝜑𝐹𝑝 : variable replenishment cost of product-p of the follower player 

𝜔𝐿𝑝 : fixed replenishment cost of product-p of the leader player 

𝜔𝐹𝑝 : fixed replenishment cost of product-p of the follower player 

 

2.2. Optimisation Model 

The selling price has a direct impact on the demand for the product, making it comparable to the demand 

forecasting technique. Traditional applications of SGT primarily focus on maximising the profit of all players 

within a hierarchical supply chain structure, with the assumption that players behave as rational leaders or 

followers. In such models, the interaction is frequently simplified by assuming that each player's decision 

primarily impacts their own profit, with an overly linear or limited consideration of interdependencies among 

players. Nevertheless, this assumption becomes problematic in realistic competitive environments, 

particularly in decentralised retail systems where multiple participants offer substitutable products. 

Traditional SGT models frequently generate unrealistic or exaggerated pricing strategies when the influence 

of one player's price on the demand of others is disregarded or oversimplified. Although these strategies may 

theoretically maximise total system profit, they may result in impractical, such as the leaders setting 

substantially high price and the followers being priced out of competition. Therefore, in order to maximise the 

total profit, it is necessary to concurrently maximise the accuracy of the demand forecasting by minimising the 

error in demand forecasting with refere to the historical equilibrium conditions. An effective metric for this 

objective is the Mean Squared Error (MSE) [35], [36]. Hence, an additional objective to accomplish is to 

minimise the MSE of the demand forecasting. Eq. (1) below shows the first objective while Eq. (2) and Eq. (3) 

below show the second objective. 
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𝑀𝑎𝑥 𝑇𝑃 =  ∑(𝑆𝑃𝐿𝑝𝑡+1 × 𝐷𝐹𝐿𝑝𝑡+1) − 𝑃𝐶𝐿𝑝𝑡+1

𝑃

𝑝=1

+ ∑(𝑆𝑃𝐹𝑝𝑡+1 × 𝐷𝐹𝐹𝑝𝑡+1) − 𝑃𝐶𝐹𝑝𝑡+1

𝑃

𝑝=1

 (1) 

𝑀𝑖𝑛 𝑀𝑆𝐸𝐿𝑝 =
∑ (𝐷𝐿𝑝𝑡 − 𝐷𝐹𝐿𝑝𝑡)

2𝑇
𝑡=1

𝑇
; ∀𝑝, 𝑝 = 1, 2, … , 𝑃 (2) 

𝑀𝑖𝑛 𝑀𝑆𝐸𝐹𝑝 =
∑ (𝐷𝐹𝑝𝑡 − 𝐷𝐹𝐹𝑝𝑡)

2𝑇
𝑡=1

𝑇
; ∀𝑝, 𝑝 = 1, 2, … , 𝑃 (3) 

The products examined in this study are generic products, specifically batik garments, where consumers 

are very easy to switch from one retailer to another based on price competitiveness. Therefore, the product’s 

demand is highly responsive to changes in the selling price. Nevertheless, there exist consumers who already 

exhibit a proclivity to purchase batik garments exclusively from a particular player due to the effects of the 

promotional efforts. Another determinant of product demand is the 𝑆𝐼𝐿𝑝𝑡 and 𝑆𝐼𝐹𝑝𝑡. This is particularly 

relevant for the two players being studied, as they are situated in a popular tourist area in Indonesia that 

experiences a surge in visitors during the holiday season. Eq. (4) and Eq. (5) below show the estimator formula 

to predict the demand of every product in every player. 

𝐷𝐹𝐿𝑝𝑡 = (𝛼𝐿𝑝 − (𝛽𝐿𝑝 × 𝐻𝑆𝐿𝑝𝑡) + (𝛾𝐿𝑝 × 𝐻𝑆𝐹𝑝𝑡)) × (𝛿𝐿𝑝 × 𝑆𝐼𝐿𝑝𝑡) (4) 

𝐷𝐹𝐹𝑝𝑡 = (𝛼𝐿𝑝 + (𝛽𝐹𝑝 × 𝐻𝑆𝐹𝑝𝑡) − (𝛾𝐹𝑝 × 𝐻𝑆𝐿𝑝𝑡)) × (𝛿𝐹𝑝 × 𝑆𝐼𝐹𝑝𝑡) (5) 

The sales manager of each player provided information that the replenishment cost is comprised of the 

cost of placing orders with the batik manufacturer and the cost associated with managing the product from 

the time it is received until it is sold. The retailers have meticulously documented the cost of replenishing each 

product. Therefore, the entire replenishment cost can be approximated using an equation that links the 

quantity of demand with the overall replenishment cost at a specific point in time. Eq. (6) and Eq. (7) show the 

predictor formula of the total replenishment cost in every player. 

𝑃𝐶𝐿𝑝𝑡 = (𝜑𝐿𝑝 × 𝐷𝐹𝐿𝑝𝑡) + 𝜔𝐿𝑝 (6) 

𝑃𝐶𝐹𝑝𝑡 = (𝜑𝐹𝑝 × 𝐷𝐹𝐹𝑝𝑡) + 𝜔𝐹𝑝 (7) 

Based on the models explained, there are a total of 14 decision variables types. These variables will be 

utilised to represent 5 different products within the context of a competition involving 2 players. Therefore, 

there are a total of 14 x 5 x 2 = 140 decision variables in the optimisation, indicating that this is a complex 

optimisation problem. The optimisation model will be further compounded due to the non-linear nature of 

the demand and replenishment cost prediction models. Hence, GA that proposed in this study is a suitable 

optimisation approach for solving the faced large-scale optimisation problems under non-linear models. 

 

2.3. GA Modelling 

Since GA works with encoded solutions, the first critical thing in GA modeling is chromosome encoding. 

In its searching process, GA manipulates the chromosomes in each generation to get a better solution than the 

previous generation. Thus, chromosome encoding will be carried out based on the solution to be sought for 

the problem at hand. Figure 1 shows the proposed chromosome design for this study. 

 
|𝑆𝑃𝐿1||𝛼𝐿1||𝛽𝐿1||𝛾𝐿1||𝛿𝐿1||𝜑𝐿1||𝜔𝐿1||𝑆𝑃𝐹1||𝛼𝐹1||𝛽𝐹1||𝛾𝐹1||𝛿𝐹1||𝜑𝐹1||𝜔𝐹1| ∙∙∙ |𝛾𝐹5||𝛿𝐹5||𝜑𝐹5||𝜔𝐹5| 

 

Figure 1. The chromosome design  

 

The next critical thing of GA is the identification of fitness function for every chromosome. The fitness 

function generates a value that indicates the effectiveness of each chromosome in solving the optimisation 

problem at hand. GA operates without knowledge of the problem being solved and lacks perception. Instead, 

GA relies on the fitness of chromosomes to steer it towards the optimal solution. Essentially, GA will preserve 

and enhance chromosomes with high fitness values, which is analogous to the maximisation function.  
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Technically, this study has two objectives: maximising the profit for both the leader and follower players 

by determining the selling price of the products, and minimising the error in demands prediction resulting 

from the determined selling price. The first objective function aligns with the fundamental principle of GA, 

which is resembling a maximisation function. However, the second objective function contradicts the core 

concept of GA, hence requires a modification. Besides, normalisation is necessary to ensure that the first and 

second objective function values, which have distinct scales, are brought to a normal scale of 0 to 1. By 

considering the factors explained above, Eq. (8) bellow is proposed as the fitness function of the chromosomes. 

𝑓𝑖𝑡𝑐 = 𝑤𝑝 × (
(𝑇𝑃)𝑐

𝑚𝑎𝑥((𝑇𝑃)𝑐; ∀𝑐)
) − 𝑤𝑓 × ((

(𝑀𝑆𝐸𝐿𝑝)
𝑐

𝑚𝑎𝑥 ((𝑀𝑆𝐸𝐿𝑝)
𝑐
; ∀𝑐 )

) + (
(𝑀𝑆𝐸𝐹𝑝)

𝑐

𝑚𝑎𝑥 ((𝑀𝑆𝐸𝐹𝑝)
𝑐
; ∀𝑐 )

)) (8) 

In GA, the enhancement of chromosomes performance is carried out through two evolutionary 

operations that are crossover and mutation. Crossover recombines two parent chromosomes to generate two 

offspring chromosomes, while mutation modifies a parent chromosome to produce a single offspring 

chromosome. Mechanism of the both operations must be determined carefully to avoid invalid offspring 

chromosomes that generate infeasible solutions for the optimisation problem. In this study, the crossover 

operation implements a two-cut points crossover, as depicted in Figure 2, while the mutation operation 

implements a delta mutation, as illustrated in Figure 3. 

 

 
 

Figure 2. Two-cut points crossover proposed in this study 

 

 
 

Figure 3. Delta mutation proposed in this study 

 

2.4. Result analysis 

Analysis on the reault is carried out to assess the effectiveness of the proposed method. The analysis is 

conducted based on historical data on the demand and the selling prices of each product, for both the leader 

and follower player. The effectiveness of the suggested model is evaluated based on enhancement of the total 

profit obtained by all players when implementing the recommended selling price compared with the total 

profit obtained when implementing the current selling prices. 

 

3. RESULTS 

This study commences by gathering historical data on DL, DF, HSL, HSF, PCL and PCF. Data was gathered 

over a span of 36 months (𝑡 ∈ 𝑇, 𝑇 = 1, 2, … 36) for 5 primary products sold by both the leader and follower 

player (𝑝 ∈ 𝑃, 𝑃 = 1, 2, … , 5). GA employs stochastic intergenerational transfer and random search techniques. 

Therefore, GA must be ran with a variety of parameter values in order to achieve satisfactory results. The 

outcomes that necessitate evaluation are the best chromosome fitness value that represents the quality of the 
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solution and the standard deviation of the chromosomes in the last generation that represents the ability of 

GA to maintain chromosome diversity. Table 1 illustrates the results of five GA runs conducted in this study. 

Table 1. Result of five GA runs with different parameter values 

p_size pc pm best fit st.dev 

10 0.5 0.2 7.98 1.92 

25 0.5 0.3 8.12 2.02 

50 0.4 0.1 8.23 1.20 

75 0.6 0.2 8.23 1.20 

100 0.5 0.3 8.23 1.97 

 

Table 1 indicates that the optimal fitness value is 8.23, which can be attained by setting p_size greaters than 

or equals to 50. The high pm value is the cause of the high chromosome diversity, and the quality of the solution 

is not influenced by the variation of the pc value between 0.3 and 0.5. Thus, the GA was executed with the 

following parameter settings: p_size = 50, pc = 50%, pm = 30%, and G = 1000. It is important to recognise that 

GA is an offline optimisation algorithm that necessitates a relatively long computation time. Consequently, it 

cannot be used in real time to accommodate the uncertainty occurred in other cases. Therefore, the parameter 

settings are only good for solving this case study. 

An important factor to be aware of while utilising GA for optimisation is the local optimum trap, which 

prevents GA's to explore the solution space. The phenomenon of GA becoming trapped in a local optimum is 

indicated by the occurrence of premature convergence, which can be identified by analysing the GA searching 

graph. If the mean fitness value of chromosomes in a generation aligns with the best fitness value of the 

chromosomes in the early generations, then the GA is indicated unable to preserve the diversity of 

chromosomes and has been trapped in premature convergence. Figure 4 depicts the GA searching graph in 

this work. 

 

 
 

Figure 4. Searching graph shows the proposed GA 

 
Figure 4 demonstrates that the GA has the capability to enhance chromosome performance over time 

while also preserving chromosome variety. Therefore, when the proposed GA converged to a solution, it can 

be considered an optimum solution. The optimum value for all of the devision variables regarding the selling 

price and the replenishment cost are shown in Table 2, while Table 3 shows the optimum value for the deision 

variables regarding the demand forecasting variables and Table 4 shows the profits earned by both the leader 

and follower players for the sale of all the products. 
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Table 2. Value of the optimised decision variables regarding selling price and replenishment cost 

 

p 𝑺𝑷𝑳 𝑺𝑷𝑭 𝝋𝑳 𝝋𝑭 𝝎𝑳 𝝎𝑭 

1 455206 262136 80000 80000 30000 20000 

2 387847 289396 80000 70000 30000 20000 

3 304471 162639 70000 65000 28000 18000 

4 298351 137166 40000 25000 35000 28000 

5 985799 915298 400000 370000 35000 28000 

 

Table 3. Value of the optimised decision variables regarding the demand forecasting variables 

 

p 𝑺𝑷𝑳 𝑺𝑷𝑭 𝝋𝑳 𝝋𝑭 𝝎𝑳 𝝎𝑭 

1 455206 262136 80000 80000 30000 20000 

2 387847 289396 80000 70000 30000 20000 

3 304471 162639 70000 65000 28000 18000 

4 298351 137166 40000 25000 35000 28000 

5 985799 915298 400000 370000 35000 28000 

 

Table 4. Potential profits earned by the players for the sale of all the products 

 

p 𝑫𝑭𝑳𝒕+𝟏 𝑫𝑭𝑭𝒕+𝟏 TPL TPF TP 

1 567 333 191888642.46 56724210.20 248612852.67 

2 354 346 104008790 65341168 169349958 

3 174 176 36107066 8962576 45069642 

4 299 301 60934654.77 10506200.72 71440855.50 

5 346 54 308527102 40620740 349147842 

Total 701466255.23 182154895.9 883621150.2 

 

The proposed model has also been solved using the Generalised Reduced Gradient (GRG Nonlinear) 

algorithm implemented in the Microsoft Excel solver for the purpose of comparison study. The results of 

optimisation achieved with this algorithm are illustrated in Table 5. 

 

Table 5. Solutions provided by GRG Nonlinear algorithm 

 

p 𝑫𝑭𝑳𝒕+𝟏 𝑫𝑭𝑭𝒕+𝟏 SPL SPF TP 

1 556 344 399338 295857 227308897.39 

2 359 341 382349 293606 169292921 

3 205 145 251113 191116 42588265 

4 299 301 298351 137166 71440855.50 

5 530 27 987000 915298 341501296 

Total 2318151 1833043 852132235 

 

Table 5 above shows that the optimisation results of GRG Nonlinear are identical to those of GA for 

product 4. However, for other products, the solution generated by GA is superior to that of GRG Nonlinear. 

 

4. DISCUSSION 

Prior studies concerning the determination of selling price have indicated that the determined selling 

price influences consumer demand response [37]–[39]. Nevertheless, those studies have not accounted for the 

validation of the demand forecasting resulting from the determined selling price; thus, the predicted demand 

may deviate from the historical demand patterns. This work incorporates the validation of demand forecasting 

into the objective functions of the developed optimisation model. Consequently, the selling price determined 

to optimise profit will yield an accurate demand forecast, which constitutes the novel aspect of this study. The 
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outcomes of the demand forecasting based on historical demand for each product across all players are 

illustrated in Figure 5 below. 

 

  
(a) Historical vs predicted demand of p = 1 in the 

leader player, MSE = 559.08 

(b) Historical vs predicted demand of p = 1 in thye 

follower player, MSE = 130.22 

  
(c) Historical vs predicted demand of p = 2 in the 

leader player, MSE = 581 

(d) Historical vs predicted demand of p = 2 in the 

follower player, MSE = 551.19 

  
(e) Historical vs predicted demand of p = 3 in the 

leader player, MSE = 346.92 

(f) Historical vs predicted demand of p = 3 in the 

follower player, MSE = 252.17 

  
(g) Historical vs predicted demand of p = 4 in the 

leader player, MSE = 1277.33 

(h) Historical vs predicted demand of p = 4 in the 

follower player, MSE = 228.61 
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(i) Historical vs predicted demand of p = 5 in the 

leader player, MSE = 3080.86 
(j) Historical vs predicted demand of p = 5 in the 

follower player, MSE = 36.17 
 

Figure 5. Historical versus predicted demand for all of the products in the leader and follower player 

 

Figure 5 (a-j) illustrates that the pattern of demand prediction results aligns with the historical demand 

data pattern. Consequently, it can be asserted that the demand prediction derived from product price 

optimisation results aligns with the established demand data patterns. 

As the 𝑃𝐶𝐿𝑝 and 𝑃𝐶𝐹𝑝 are aggregated, it is necessary to validate the replenishment cost models as well. 

Figure 6 illustrates the replenishment cost models and their validation by comparison with the historical 𝑃𝐶𝐿𝑝 

and 𝑃𝐶𝐹𝑝. 

 

  
(a) Replenishment cost model for p = 1 in the leader 

player 

(b) Replenishment cost model for p = 1 in the 

follower player 

  
(c) Replenishment cost model for p = 2 in the leader 

player 

(d) Replenishment cost model for p = 2 in the 

follower player 
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(e) Replenishment cost model for p = 3 in the leader 

player 

(f) Replenishment cost model for p = 3 in the 

follower player 

  
(g) Replenishment cost model for p = 4 in the leader 

player 

(h) Replenishment cost model for p = 4 in the 

follower player 

  
(i) Replenishment cost model for p = 5 in the leader 

player 

(j) Replenishment cost model for p = 5 in the 

follower player 

  

Figure 6. The total replenishment cost models for all of the products in leader and follower player 

 

Figure 6 (a-j) demonstrates that the predictive equations for 𝑃𝐶𝐿𝑝 and 𝑃𝐶𝐹𝑝 closely align with historical 

data, as evidenced by a relatively high 𝑅2value. Therefore, the equations employed for predicting 𝑃𝐶𝐿𝑝 and 

𝑃𝐶𝐹𝑝 are deemed valid. The validation of the predicted demand and the replenishment cost results for each 

product across all players has confirmed the validity of the new contributions discussed in this study. 

Alongside the valid results, the superiority of the resultant solution is compared to the potential profit 

achievable by the leader and follower players when applying the existing selling price. Table 6 presents the 

existing selling price of each product, together with the prospective demand and profit potential for each 

player. 
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Table 6. Potential profits earned by the players based on existing selling price 

 

p 𝑺𝑷𝑳c 𝑺𝑷𝑭c 𝑫𝑭𝑳𝒕+𝟏 𝑫𝑭𝑭𝒕+𝟏 TPLc TPFc TPc 

1 465000 270000 489 288 169867368 51053056 220920424 

2 395000 285000 328 332 98642464 61075984 159718448 

3 315000 165000 161 166 35029868 8617992 43647860 

4 315000 145000 269 271 59198972 11179252 70378224 

5 1000000 920000 279 55 252551852 41705660 294257512 

Total 615290524 173631944 788922468 

 

From Table 3 and Table 4 above, it can be calculated that improvement on TPL, TPF and TP based on 

the optimised SGT model are 
(701466255.23−615290524)

615290524
× 100% = 14%, 

(182154894.92−173631944)

173631944
× 100% = 4.91%, 

and 
(883621150.17−788922468)

788922468
× 100% = 12% respectively. 

In this case, the leader and follower have the same market share, but the leader has a stronger brand 

image than the follower. Therefore, the proposed model can be developed by duplicating the model built for 

the follower if there is a new player in the same market and its position as a follower. 

 

5. CONCLUSION 

This research presents an optimised SGT model utilising GA to ascertain the selling price of five batik 

clothes. The significant different of the proposed SGT model relative to prior studies is its simultaneous 

modelling of the impact of selling price on demand for both leader and follower players, thereby obviating 

the need for bi-level optimisation and NGA as the optimisation algorithm. The model's simplification enhances 

its practicality for managers in both leader and follower player to adopt and implement it. Furthermore, 

another significant aspect of the suggested approach is the incorporation of a demand forecasting validation 

to the SGT optimisation model. Validating model outcomes against historical data ensures that optimised 

prices are not only mathematically feasible but also market-acceptable. This prevents all players from making 

extreme pricing decisions that could potentially undermine their businesses. The suggested optimised SGT 

model enhances the total profits of the leader, follower, and all players by 14%, 5%, and 12%, respectively. For 

further study, the analysis can be continued by extending the scope to a multi-echelon supply chain system in 

order to optimise inventory at all retailers and production quantity at supplier. 
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