Evaluasi Kehadiran Dan Pemanfaatan Duckweed Pada Sistem Kolam Stabilisasi Pengolahan Air Limbah Domestik
DOI:
https://doi.org/10.31315/jilk.v5i1.7292Abstract
Pengolahan air limbah domestik yang saat ini umum digunakan adalah kolam stabilisasi yang terdiri dari anaerob, fakultatif, dan aerobik. Di dalam prosesnya setelah melalui kolam stabilisasi dapat dapat ditampung melalui reservoir. Dalam proses pengolahan dengan proses kolam stabilisasi kehadiran gulma seperti duckweed dapat memban meningkatkan efisiensi penyisihan nutrient. Tujuand ari studi ini adalah untuk mengevaluasi kehadiran duckweed pada air limbah dan potensi pemanfaatannya di sistem kolam stabilisasi. Studi ini dilakukan dengan cara observasi lapangan dan studi literatur. Sistem kolam stabilisasi terdiri dari 3 sel: sel IA dan sel IB, sel IIA dan IIB, dan sel III. Sel I terdiri dari dua bagian yaitu sel IA dan sel IIB. Duckweed dalam sistem hanya tumbuh di kolam sel IB, sel IIA dan reservoir. Sesuai dengan karakteristiknya, alga memang sudah seharusnya tumbuh di sel IIA. Sel IIA adalah kolam fakultatif, yang memiliki daerah aerobik dan daerah anaerobik. Saat pagi dan sore hari alga tidak muncul ke permukaan dan air terlihat bening. Alga yang muncul di reservoir didominasi oleh alga kelas Chlorophyta karena memiliki warna hijau. Duckweed dapat digunakan sebagai pakan ternak seperti ikan, sapi, domba, kuda dan babi. Selain itu duckweed juga daapat dijadikan sumber energi dengan teknologi termokimia telah banyak digunakan untuk menghasilkan produk bio-minyak, arang dan gas.References
Abdel-Raouf, N., Al-Homaidan, A. A., & Ibraheem, I. B. M. (2012). Microalgae and wastewater treatment. Saudi Journal of Biological Sciences, 19(3), 257–275. https://doi.org/https://doi.org/10.1016/j.sjbs.2012.04.005
Afifah, A. S., Suryawan, I. W. K., & Sarwono, A. (2020). Microalgae production using photo-bioreactor with intermittent aeration for municipal wastewater substrate and nutrient removal. Communications in Science and Technology, 5(2), 107–111. https://doi.org/10.21924/cst.5.2.2020.200
An, D., Zhou, Y., Li, C., Xiao, Q., Wang, T., Zhang, Y., Wu, Y., Li, Y., Chao, D.-Y., Messing, J., & Wang, W. (2019). Plant evolution and environmental adaptation unveiled by long-read whole-genome sequencing of Spirodela. Proceedings of the National Academy of Sciences, 116, 201910401. https://doi.org/10.1073/pnas.1910401116
Chen, G., Zhao, K., Li, W., Yan, B., Yu, Y., Li, J., Zhang, Y., Xia, S., Cheng, Z., Lin, F., Li, L., Zhao, H., & Fang, Y. (2022). A review on bioenergy production from duckweed. Biomass and Bioenergy, 161, 106468. https://doi.org/https://doi.org/10.1016/j.biombioe.2022.106468
Chen, X.-C., Kong, H.-N., He, S.-B., Wu, D.-Y., Li, C.-J., & Huang, X.-C. (2009). Reducing harmful algae in raw water by light-shading. Process Biochemistry, 44(3), 357–360. https://doi.org/https://doi.org/10.1016/j.procbio.2008.11.002
Cheng, X., Delanka-Pedige, H. M. K., Munasinghe-Arachchige, S. P., Abeysiriwardana-Arachchige, I. S. A., Smith, G. B., Nirmalakhandan, N., & Zhang, Y. (2020). Removal of antibiotic resistance genes in an algal-based wastewater treatment system employing Galdieria sulphuraria: A comparative study. Science of The Total Environment, 711, 134435. https://doi.org/https://doi.org/10.1016/j.scitotenv.2019.134435
Culley Jr., D. D., Rejmánková, E., Květ, J., & Frye, J. B. (1981). PRODUCTION, CHEMICAL QUALITY AND USE OF DUCKWEEDS (LEMNACEAE) IN AQUACULTURE, WASTE MANAGEMENT, AND ANIMAL FEEDS. Journal of the World Mariculture Society, 12(2), 27–49. https://doi.org/https://doi.org/10.1111/j.1749-7345.1981.tb00273.x
Darwin, D., Prajati, G., Adicita, Y., Suryawan, I. W. K., & Sarwono, A. (2021). EVALUATION OF WASTEWATER TREATMENT IN NUSA DUA TOURISM AREA AND THEIR CHALLENGES TO ALGAE BLOOM. ASTONJADRO: CEAESJ, 10(2), 346–351.
Darwin, Koko Suryawan, I. W., & Prajati, G. (2019). Evaluation of Waste Stabilization Pond (WSP) Performance in Bali Tourism Area. 2019 2nd International Conference on Applied Engineering (ICAE), 1–5. https://doi.org/10.1109/ICAE47758.2019.9221708
Edokpayi, J. N., Odiyo, J. O., Popoola, O. E., & Msagati, T. A. M. (2021). Evaluation of contaminants removal by waste stabilization ponds: A case study of Siloam WSPs in Vhembe District, South Africa. Heliyon, 7(2), e06207. https://doi.org/https://doi.org/10.1016/j.heliyon.2021.e06207
Fourounjian, P., Fakhoorian, T., & Cao, X. H. (2020). Importance of Duckweeds in Basic Research and Their Industrial Applications BT - The Duckweed Genomes (X. H. Cao, P. Fourounjian, & W. Wang (eds.); pp. 1–17). Springer International Publishing. https://doi.org/10.1007/978-3-030-11045-1_1
Goopy, J., & Murray, P. (2003). A Review on the Role of Duckweed in Nutrient Reclamation and as a Source of Animal Feed. Asian-Australasian Journal of Animal Sciences, 16. https://doi.org/10.5713/ajas.2003.297
Grötzschel, S., & Beer, D. (2002). Effect of Oxygen Concentration on Photosynthesis and Respiration in Two Hypersaline Microbial Mats . Microbial Ecology, 44(3), 208–216. https://doi.org/10.1007/s00248-002-2011-2
Guedes-Alonso, R., Montesdeoca-Esponda, S., Herrera-Melián, J. A., Rodríguez-Rodríguez, R., Ojeda-González, Z., Landívar-Andrade, V., Sosa-Ferrera, Z., & Santana-Rodríguez, J. J. (2020). Pharmaceutical and personal care product residues in a macrophyte pond-constructed wetland treating wastewater from a university campus: Presence, removal and ecological risk assessment. The Science of the Total Environment, 703, 135596. https://doi.org/10.1016/j.scitotenv.2019.135596
Hemalatha, M., & Venkata Mohan, S. (2022). Duckweed biorefinery – Potential to remediate dairy wastewater in integration with microbial protein production. Bioresource Technology, 346, 126499. https://doi.org/https://doi.org/10.1016/j.biortech.2021.126499
Jana, B. B., Heeb, J., & Das, S. (2018). Ecosystem Resilient Driven Remediation for Safe and Sustainable Reuse of Municipal Wastewater BT - Wastewater Management Through Aquaculture (B. B. Jana, R. N. Mandal, & P. Jayasankar (eds.); pp. 163–183). Springer Singapore. https://doi.org/10.1007/978-981-10-7248-2_8
Kayombo, S., Mbwette, T. S. A., Mayo, A. W., Katima, J. H. Y., & Jorgensen, S. E. (2000). Modelling diurnal variation of dissolved oxygen in waste stabilization ponds. Ecological Modelling, 127(1), 21–31. https://doi.org/https://doi.org/10.1016/S0304-3800(99)00196-9
Liu, Y., Xu, H., Yu, C., & Zhou, G. (2021). Multifaceted roles of duckweed in aquatic phytoremediation and bioproducts synthesis. GCB Bioenergy, 13(1), 70–82. https://doi.org/https://doi.org/10.1111/gcbb.12747
Mahapatra, S., Samal, K., & Dash, R. R. (2022). Waste Stabilization Pond (WSP) for wastewater treatment: A review on factors, modelling and cost analysis. Journal of Environmental Management, 308, 114668. https://doi.org/https://doi.org/10.1016/j.jenvman.2022.114668
Mappanganro, R., Paly, M. B., Kiramang, K., & Nurhidayat, R. (2019). Pengaruh Pemberian Alga Coklat (Sargassum sp.) Terhadap Pertambahan Berat Badan Sapi Bali Jantan. Jurnal Ilmu Dan Industri Peternakan , 4(2 SE-Table of contents), 139–148. https://doi.org/10.24252/jiip.v4i2.9858
Mara, D. (1998). Design manual for waste stabilization ponds in Mediterranean countries.
Muñoz, R., & Guieysse, B. (2006). Algal–bacterial processes for the treatment of hazardous contaminants: A review. Water Research, 40(15), 2799–2815. https://doi.org/https://doi.org/10.1016/j.watres.2006.06.011
Peng, J., Wang, B., Song, Y., & Yuan, P. (2007). Modeling N transformation and removal in a duckweed pond: Model application. Ecological Modelling, 206(3), 294–300. https://doi.org/https://doi.org/10.1016/j.ecolmodel.2007.03.037
Pocock, G., & Joubert, H. (2013). Optimisation of Waste Stabilisation Ponds by Combining Duckweed-Based and Algal-Based Systems (Issue 2005).
Prajati, G., Afifah, A. S., & Apritama, M. R. (2021). Nh3-n and cod reduction in endek (Balinese textile) wastewater by activated sludge under different do condition with ozone pretreatment. Walailak Journal of Science and Technology, 18(6), 1–11. https://doi.org/10.48048/wjst.2021.9127
Pratiwi, D. M., Budiman, A., Supraba, I., & Suyono, E. A. (2019). Comparison of the Effectiveness of Microalgae Harvesting with Filtration and Flocculation Methods in WWTP ITDC Bali. International Journal of Environmental and Science Education, 14(1), 1–12.
Priutama, Y. E., Sarwono, A., & Suryawan, I. W. K. (2022). EVALUASI KARAKTERISTIK AIR LIMBAH HASIL PENGOLAHAN WASTE STABILAZION POND DI KOTA JAKARTA. Teras Jurna, 12(1), 205–214.
Reddy, K. R., & Debusk, T. A. (1987). State-of-the-Art Utilization of Aquatic Plants in Water Pollution Control. Water Science and Technology, 19, 61–79.
Samal, K., & Trivedi, S. (2020). A statistical and kinetic approach to develop a Floating Bed for the treatment of wastewater. Journal of Environmental Chemical Engineering, 8(5), 104102. https://doi.org/https://doi.org/10.1016/j.jece.2020.104102
Sandau, E., Sandau, P., & Pulz, O. (1996). Heavy metal sorption by microalgae. Acta Biotechnologica, 16(4), 227–235. https://doi.org/https://doi.org/10.1002/abio.370160402
Septiariva, I. Y., & Suryawan, I. W. K. (2021). Development of water quality index (WQI) and hydrogen sulfide (H2S) for assessment around suwung landfill, Bali Island. Journal of Sustainability Science and Management, 16(4), 137–148.
Skillicorn, P., Spira, W., & Journey, W. (1993). Duckweed aquaculture: a new aquatic farming system for developing countries. In Duckweed aquaculture: a new aquatic farming system for developing countries.
Sofiyah, E. S., Ariyanti, S., Septiariva, I. Y., & Suryawan, I. W. K. (2021). The Opportunity of Developing Microalgae Cultivation Techniques in Indonesia. Berita Biologi, 20(2), 221–233.
Sońta, M., Rekiel, A., & Batorska, M. (2019). Use of Duckweed L.) in Sustainable Livestock Production and Aquaculture – A Review. Annals of Animal Science, 19(2), 257–271. https://doi.org/doi:10.2478/aoas-2018-0048
Suryawan, I. E. K., & Sofiyah, E. S. (2020). Cultivation of Chlorella sp . and Algae Mix for NH 3 -N and. Civil and Environmental Science, III(01), 31–36.
Suryawan, I., Septiariva, I. Y., Helmy, Q., Notodarmojo, S., Wulandari, M., Sari, N. K., Sarwono, A., & Jun-Wei, L. (2021). Comparison of Ozone Pre-Treatment and Post-Treatment Hybrid with Moving Bed Biofilm Reactor in Removal of Remazol Black 5. International Journal of Technology, 12(2).
Sutherland, D. L., Turnbull, M. H., & Craggs, R. J. (2017). Environmental drivers that influence microalgal species in fullscale wastewater treatment high rate algal ponds. Water Research, 124, 504–512. https://doi.org/10.1016/j.watres.2017.08.012
Verma, R., & Suthar, S. (2015). Utility of Duckweeds as Source of Biomass Energy: a Review. BioEnergy Research, 8(4), 1589–1597. https://doi.org/10.1007/s12155-015-9639-5
Zhao, Y., Fang, Y., Jin, Y., Huang, J., Bao, S., Fu, T., He, Z., Wang, F., & Zhao, H. (2014). Potential of duckweed in the conversion of wastewater nutrients to valuable biomass: A pilot-scale comparison with water hyacinth. Bioresource Technology, 163, 82–91. https://doi.org/https://doi.org/10.1016/j.biortech.2014.04.018
Downloads
Published
Issue
Section
License
The copyright to this article is transferred to Jurnal Ilmiah Lingkungan Kebumian if and when the article is accepted for publication. Articles and all related material published are distributed under a a Creative Commons Attribution 4.0 International License.