Phytoremediation Methods for Managing Lead (Pb)-Contaminated Soil: A Literature Review
Abstract
Full Text:
PDFReferences
Ali, S., Abbas, Z., Rizwan, M., Zaheer, I.E., Yavas, I., Ünay, A., Abdel-Daim, M.M., Jumah, M., Hasanuzzaman, M., Kalderis, D., 2020. Application of floating aquatic plants in phytoremediation of heavy metals polluted water: a review. Sustain 12 (1927);
Bali, A.S., Sidhu, G.P.S., 2021. Arsenic acquisition, toxicity and tolerance in plants - from physiology to remediation: a review. Chemosphere. https://doi.org/10.1016/j. chemosphere.2021.131050.
Cameselle, C., Gouveia, S., 2019. Phytoremediation of mixed contaminated soil enhanced with electric current. J. Hazard Mater. 361, 95–102. https://doi.org/ 10.1016/j.jhazmat.2018.08.062.
Cao, X., Wang, X., Tong, W., Gurajala, H.K., Lu, M., Hamid, Y., Feng, Y., He, Z., Yang, X., 2019. Distribution, availability and translocation of heavy metals in soil-oilseed rape (Brassica napus L.) system related to soil properties. Environ. Pollut. 252, 733–741. https://doi.org/10.1016/j.envpol.2019.05.147.
Dou, X.K., Dai, H.P., Skuza, L., Wei, S.H., 2022. Cadmium removal potential of hyperaccumulator Solanum nigrum L. under two planting modes in three years continuous phytoremediation. Environ. Pollut. 2022 (307), 119493.
Egendorf, S.P., Groffman, P., Moore, G., Chen, Z.Q., 2020. The limits of lead (Pb) phytoextraction and possibilities of phytostabilization in contaminated soil: a critical review. Int. J. Phytoremediat. 22, 916–930.
García-Delgado, C., D’Annibale, A., Pesciaroli, L., Yunta, F., Crognale, S., Petruccioli, M., Eymar, E., 2015a. Implications of polluted soil biostimulation and bioaugmentation with spent mushroom substrate (Agaricus bisporus) on the microbial community and polycyclic aromatic hydrocarbons biodegradation. Sci. Total Environ. 508, 20–28. https://doi.org/10.1016/j.scitotenv.2014.11.046.
Guo, X., Zhao, G., Zhang, G., He, Q., Wei, Z., Zheng, W., Qian, T., Wu, Q., 2018b. Effect of mixed chelators of EDTA, GLDA, and citric acid on bioavailability of residual heavy metals in soils and soil properties. Chemosphere 209, 776–782. https://doi. org/10.1016/j.chemosphere.2018.06.144.
Hu, Z., Xie, Y., Jin, G., Fu, J., Li, H., 2015. Growth responses of two tall fescue cultivars to Pb stress and their metal accumulation characteristics. Ecotoxicology 24, 563–572. https:// doi.org/10.1007/s10646-014-1404-6.
Kumar, S., Rahman, M.A., Islam, M.R., Hashem, M.A., Rahman, M.M., 2022. Lead and other elements-based pollution in soil, crops and water near a lead-acid battery recycling factory in Bangladesh. Chemosphere 290, 133288.
Mahar, A., Wang, P., Ali, A., Awasthi, M.K., Lahori, A.H., Wang, Q., Li, R., Zhang, Z., 2016. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. Ecotoxicol. Environ. Saf. 126, 111–121. https://doi. org/10.1016/j.ecoenv.2015.12.023
Polti, M.A., Aparicio, J.D., Benimeli, C.S., Amoroso, M.J., 2014. Simultaneous bioremediation of Cr(VI) and lindane in soil by actinobacteria. Int. Biodeterior. Biodegrad. 88, 48–55. https://doi.org/10.1016/j.ibiod.2013.12.004.
Ranskin, dkk. 1997. Phytoremediation of Metals: Using Plants to Remove Pollutans from the Environment Current Opinion in Biotechnology. Skotlandia: University of Aberdeen.
Rehman, Z., Junaid, M.F., Ljaz, N., Khalid, U., Ijaz, Z., 2023. Remediation methods of heavy metal contaminated soils from environmental and geotechnical standpoints. Sci. Total Environ. 867, 161468.
Rigas, F., Papadopoulou, K., Philippoussis, A., Papadopoulou, M., Chatzipavlidis, J., 2009. Bioremediation of lindane contaminated soil by Pleurotus ostreatus in non sterile conditions using multilevel factorial design. Water Air Soil Pollut. 197, 121–129. https://doi.org/10.1007/s11270-008-9795-8.
Sehube, N., Kelebemang, R., Totolo, O., Laetsang, M., Kamwi, O., Dinake, P., 2017. Lead pollution of shooting range soils. S. Afr. J. Chem. 70, 21–28. https://doi.org/ 10.17159/0379-4350/2017/v70a4.
Sevak, P.I., Pushkar, B.K., Kapadne, P.N., 2021. Lead pollution and bacterial bioremediation: a review. Environ. Chem. Lett. 19, 4463–4488. https://doi.org/ 10.1007/s10311-021-01296-7.
Shen, X., Dai, M., Yang, J.W., Sun, L., Tan, X., Peng, C.S., Ali, I., Naz, I., 2022. A critical review on the phytoremediation of heavy metals from environment: performance and challenges. Chemosphere 291, 132979.
Shuttleworth. 2009. What is a Literature Review? Retrieved from http:explorable.com/what-is-a-literature-review.
Von Voithenberg, L.V., Park, J., Stübe, R., Lux, C., Lee, Y., Philippar, K., 2019b. A novel prokaryote-type ECF/ABC transporter module in chloroplast metal homeostasis. Front. Plant Sci. 10, 21. https://doi.org/10.3389/fpls.2019.01264.
Willscher, S., Jablonski, L., Fona, Z., Rahmi, R., Wittig, J., 2017. Phytoremediation experiments with Helianthus tuberosus under different pH and heavy metal soil concentrations. Hydrometallurgy 168, 153–158. https://doi.org/10.1016/j. hydromet.2016.10.016.
Zhang, Y.X., Li, T.S., Guo, Z.H., Xie, H.M., Hu, Z.H., Ran, H.Z., Li, C.Z., Jiang, Z.C., 2023. Spatial heterogeneity and source apportionment of soil metal(loid)s in an abandoned lead/zinc smelter. J. Environ. Sci. 127, 519–529. https://doi.org/10.1016/j. jes.2022.06.015.
Zhu, G., Xiao, H., Guo, Q., Song, B., Zheng, G., Zhang, Z., Zhao, J., Okoli, C.P., 2018. Heavy metal contents and enrichment characteristics of dominant plants in wasteland of the downstream of a lead-zinc mining area in Guangxi, Southwest China. Ecotoxicol. Environ. Saf. 151, 266–271.
DOI: https://doi.org/10.31315/mtj.v2i2.13360
DOI (PDF): https://doi.org/10.31315/mtj.v2i2.13360.g6937
Refbacks
- There are currently no refbacks.