Phytoremediation Methods for Managing Lead (Pb)-Contaminated Soil: A Literature Review

Emil Salim Leka, Tedy Agung Cahyadi, Rika Ernawati, Eddy Winarno

Abstract


In addressing the issue of heavy metal contamination, current reviews mainly focus on remediation through plants. Phytoremediation, a promising technology involving the use of plants to absorb heavy metals from the soil and eliminate contaminants by harvesting the plant parts above ground, has garnered significant attention due to its cost-effectiveness and environmental friendliness. The objective of this research, based on a literature review, is to determine whether there is a reduction in lead (Pb) concentration in the soil using phytoremediation methods and to assess the efficiency of plants in absorbing lead (Pb) from the soil. Based on the review of 5 plants from previous studies, some plants have shown significant and efficient effects in assisting the absorption of lead (Pb) content in the soil. Calotropis gigantea (95.88%) and Sphenoclea zeylanica Gaertn (92.43%) are identified as suitable plants for applying the phytoremediation method due to their fast absorption processes, ease of application, and availability.

Full Text:

PDF

References


Ali, S., Abbas, Z., Rizwan, M., Zaheer, I.E., Yavas, I., Ünay, A., Abdel-Daim, M.M., Jumah, M., Hasanuzzaman, M., Kalderis, D., 2020. Application of floating aquatic plants in phytoremediation of heavy metals polluted water: a review. Sustain 12 (1927);

Bali, A.S., Sidhu, G.P.S., 2021. Arsenic acquisition, toxicity and tolerance in plants - from physiology to remediation: a review. Chemosphere. https://doi.org/10.1016/j. chemosphere.2021.131050.

Cameselle, C., Gouveia, S., 2019. Phytoremediation of mixed contaminated soil enhanced with electric current. J. Hazard Mater. 361, 95–102. https://doi.org/ 10.1016/j.jhazmat.2018.08.062.

Cao, X., Wang, X., Tong, W., Gurajala, H.K., Lu, M., Hamid, Y., Feng, Y., He, Z., Yang, X., 2019. Distribution, availability and translocation of heavy metals in soil-oilseed rape (Brassica napus L.) system related to soil properties. Environ. Pollut. 252, 733–741. https://doi.org/10.1016/j.envpol.2019.05.147.

Dou, X.K., Dai, H.P., Skuza, L., Wei, S.H., 2022. Cadmium removal potential of hyperaccumulator Solanum nigrum L. under two planting modes in three years continuous phytoremediation. Environ. Pollut. 2022 (307), 119493.

Egendorf, S.P., Groffman, P., Moore, G., Chen, Z.Q., 2020. The limits of lead (Pb) phytoextraction and possibilities of phytostabilization in contaminated soil: a critical review. Int. J. Phytoremediat. 22, 916–930.

García-Delgado, C., D’Annibale, A., Pesciaroli, L., Yunta, F., Crognale, S., Petruccioli, M., Eymar, E., 2015a. Implications of polluted soil biostimulation and bioaugmentation with spent mushroom substrate (Agaricus bisporus) on the microbial community and polycyclic aromatic hydrocarbons biodegradation. Sci. Total Environ. 508, 20–28. https://doi.org/10.1016/j.scitotenv.2014.11.046.

Guo, X., Zhao, G., Zhang, G., He, Q., Wei, Z., Zheng, W., Qian, T., Wu, Q., 2018b. Effect of mixed chelators of EDTA, GLDA, and citric acid on bioavailability of residual heavy metals in soils and soil properties. Chemosphere 209, 776–782. https://doi. org/10.1016/j.chemosphere.2018.06.144.

Hu, Z., Xie, Y., Jin, G., Fu, J., Li, H., 2015. Growth responses of two tall fescue cultivars to Pb stress and their metal accumulation characteristics. Ecotoxicology 24, 563–572. https:// doi.org/10.1007/s10646-014-1404-6.

Kumar, S., Rahman, M.A., Islam, M.R., Hashem, M.A., Rahman, M.M., 2022. Lead and other elements-based pollution in soil, crops and water near a lead-acid battery recycling factory in Bangladesh. Chemosphere 290, 133288.

Mahar, A., Wang, P., Ali, A., Awasthi, M.K., Lahori, A.H., Wang, Q., Li, R., Zhang, Z., 2016. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. Ecotoxicol. Environ. Saf. 126, 111–121. https://doi. org/10.1016/j.ecoenv.2015.12.023

Polti, M.A., Aparicio, J.D., Benimeli, C.S., Amoroso, M.J., 2014. Simultaneous bioremediation of Cr(VI) and lindane in soil by actinobacteria. Int. Biodeterior. Biodegrad. 88, 48–55. https://doi.org/10.1016/j.ibiod.2013.12.004.

Ranskin, dkk. 1997. Phytoremediation of Metals: Using Plants to Remove Pollutans from the Environment Current Opinion in Biotechnology. Skotlandia: University of Aberdeen.

Rehman, Z., Junaid, M.F., Ljaz, N., Khalid, U., Ijaz, Z., 2023. Remediation methods of heavy metal contaminated soils from environmental and geotechnical standpoints. Sci. Total Environ. 867, 161468.

Rigas, F., Papadopoulou, K., Philippoussis, A., Papadopoulou, M., Chatzipavlidis, J., 2009. Bioremediation of lindane contaminated soil by Pleurotus ostreatus in non sterile conditions using multilevel factorial design. Water Air Soil Pollut. 197, 121–129. https://doi.org/10.1007/s11270-008-9795-8.

Sehube, N., Kelebemang, R., Totolo, O., Laetsang, M., Kamwi, O., Dinake, P., 2017. Lead pollution of shooting range soils. S. Afr. J. Chem. 70, 21–28. https://doi.org/ 10.17159/0379-4350/2017/v70a4.

Sevak, P.I., Pushkar, B.K., Kapadne, P.N., 2021. Lead pollution and bacterial bioremediation: a review. Environ. Chem. Lett. 19, 4463–4488. https://doi.org/ 10.1007/s10311-021-01296-7.

Shen, X., Dai, M., Yang, J.W., Sun, L., Tan, X., Peng, C.S., Ali, I., Naz, I., 2022. A critical review on the phytoremediation of heavy metals from environment: performance and challenges. Chemosphere 291, 132979.

Shuttleworth. 2009. What is a Literature Review? Retrieved from http:explorable.com/what-is-a-literature-review.

Von Voithenberg, L.V., Park, J., Stübe, R., Lux, C., Lee, Y., Philippar, K., 2019b. A novel prokaryote-type ECF/ABC transporter module in chloroplast metal homeostasis. Front. Plant Sci. 10, 21. https://doi.org/10.3389/fpls.2019.01264.

Willscher, S., Jablonski, L., Fona, Z., Rahmi, R., Wittig, J., 2017. Phytoremediation experiments with Helianthus tuberosus under different pH and heavy metal soil concentrations. Hydrometallurgy 168, 153–158. https://doi.org/10.1016/j. hydromet.2016.10.016.

Zhang, Y.X., Li, T.S., Guo, Z.H., Xie, H.M., Hu, Z.H., Ran, H.Z., Li, C.Z., Jiang, Z.C., 2023. Spatial heterogeneity and source apportionment of soil metal(loid)s in an abandoned lead/zinc smelter. J. Environ. Sci. 127, 519–529. https://doi.org/10.1016/j. jes.2022.06.015.

Zhu, G., Xiao, H., Guo, Q., Song, B., Zheng, G., Zhang, Z., Zhao, J., Okoli, C.P., 2018. Heavy metal contents and enrichment characteristics of dominant plants in wasteland of the downstream of a lead-zinc mining area in Guangxi, Southwest China. Ecotoxicol. Environ. Saf. 151, 266–271.




DOI: https://doi.org/10.31315/mtj.v2i2.13360

DOI (PDF): https://doi.org/10.31315/mtj.v2i2.13360.g6937

Refbacks

  • There are currently no refbacks.