Parameter Optimization of Customized FDM 3D Printer Machine for Biocomposite Material [Sago/PMMA] Using 2k Fractional Factorial Design
Abstract
Bone fracture caused by various incident causes medical problems. Then bone restoration is required. Bone grafts can be used to solve this problem. One of the materials that can be used to produce bone graft is PMMA. PMMA requires to be combined with other materials to extend the solidification time. The material that can be used for bone graft material is sago starch. The main ingredient composition of Biocomposite [sago/PMMA] consists of sago: PMMA = 1 : 1 (w/w). The composition of the addition of MMA is 10% (v/w) of PMMA, this is to extend the curing time. Thus the material can be through from the chamber extruder to the nozzle. This research aims to obtain combinations of 3D Printer FDM Customized machine parameters for minimizing of error dimension. The 3D Printer machine uses pneumatic system to push the material from the container to the chamber and used screw extruder to push the material out through the nozzle. The experimental design method used a 2k fractional factorial design, with 3 parameters, 2 levels and 3 responses. The experimental results obtained that the layer height parameter has a significant influence on the x-dimensional error. The optimization results obtained a combination of parameters to get the smallest error dimensions, the print speed is 25 mm/s, the layer height is 2.93 mm and the fill density is 20%. The results of optimization obtained that the x-dimensional error is 0.016, the y-dimensional error is 0.069 and the z-dimensional error is 0.4539.
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Almy, R. D., & Tontowi, A. E. (2018). The Effect of 3D Printing Machine Parameters in Extrusion Process of Biocomposite Materials (PMMA and HA) on Dimensional Accuracy. SINERGI, 22(2), 83–90.
Arora, M., Chan, E. K. S., Gupta, S., & Diwan, A. D. (2013). Polymethylmethacrylate Bone Cements and Additives: A Review of the Literature. World Journal of Orthopedics, 4(2), 67–74.
Culmone, C., Smit, G., & Breedveld, P. (2019). Additive Manufacturing of Medical Instruments : A state-of-the-art Review. Additive Manufacturing, 27, 461–473. Elsevier. Retrieved from https://doi.org/10.1016/j.addma.2019.03.015
Deev, R. V., Drobyshev, A. Y., Bozo, I. Y., & Isaev, A. A. (2015). Ordinary and Activated Bone Grafts: Applied Classification and the Main Features. BioMed Research International, 2015. Hindawi Publishing Corporation.
Hashim, A. (2019). Recent Review on Poly-methyl methacrylate (PMMA)- Polystyrene (PS) Blend Doped with Nanoparticles For Modern Applications. Research Journal of Agriculture and Biological Sciences, (December), 2–9.
Van Lieshout, E. M. M., Van Kralingen, G. H., El-Massoudi, Y., Weinans, H., & Patka, P. (2011). Microstructure and biomechanical characteristics of bone substitutes for trauma and orthopaedic surgery. BMC Musculoskeletal Disorders, 12(1), 34. BioMed Central Ltd. Retrieved from http://www.biomedcentral.com/1471-2474/12/34
Montgomery, D. C. (2009). Introduction To Statistical Quality Control. (Sixth.). Missouri: Wiley.
Nazan, M. A., Ramli, F. R., Alkahari, M. R., Sudin, M. N., & Abdullah, M. A. (2017). Process Parameter Optimization of 3D Printer Using Response Surface Method. Journal of Engineering and Applied Sciences, 12(7), 2291–2296.
Nematollahi, B., Xia, M., & Sanjayan, J. (2017). Current progress of 3D concrete printing technologies. The 34th International Symposium on Automation and Robotics in Construction (pp. 260–267).
Oryan, A., Alidadi, S., Bigham-Sadegh, A., & Moshiri, A. (2018). Healing potentials of Polymethylmethacrylate Bone Cement Combined with Platelet Gel in The Critical-sized Radial Bone Defect of Rats. PLoS ONE, 13(4), 1–17.
Pachamuthu, P., & Hatna, S. (2005). Studies on Poly(methyl methacrylate) (PMMA) and Thermoplastic Polyurethane (TPU) Blends. Journal of Macromolecular Science - Pure and Applied Chemistry, 42(10), 1399–1407.
Pettalolo, A. N. Y., Rosid, I. A., & Tontowi, A. E. (2020). Pengembangan Material Reusable Concrete untuk 3DP Building. Conference SENATIK STT Adisutjipto Yogyakarta (Vol. 6, pp. 59–66).
Puska, M., Aho, A. J., & Vallittu, P. (2011). Polymer composites for bone reconstruction. Advances in Composite Materials, 55–71.
Putra, I. R., & Tontowi, A. E. (2019). Properti Mekanik Material [ Sagu / PMMA ] “ 3D -Printable .” Seminar Nasional Inovasi dan Aplikasi Teknologi di Industri (pp. 320–323).
Ranjan, R. K., Kumar, M., & Kumar, R. (2017). Bone cement. International Journal of Orthopaedics Sciences, 3(4), 79–82.
Rosid, I. A., Putra, I. R., & Tontowi, A. E. (2019). Mechanical properties of tensile and bending stregth analysis in biocomposite [Sagoo/PMMA] material. Seminar Nasional Teknologi Informasi dan Kedirgantaraan (Vol. V, pp. 507–514). Yogyakarta.
Sekarjati, K. A., & Tontowi, A. E. (2018). The composition of biocomposite [polymethyl methacrylate/ hydroxyapatite] as material for specimen with portabee kit machine. SINERGI, 22(3), 169–176.
Sheng, T. J., Shafee, M. F., Ariffin, Z., & Jaafar, M. (2018). Review on Poly-methyl Methacrylate as Denture Base Materials. Malaysian Journal of Microscopy, 14(1), 1–16.
Sonmez, M. M., Armagan, R., Ugurlar, M., & Eren, T. (2017). Allografts versus Equine Xenografts in Calcaneal Fracture Repair. The Journal of Foot & Ankle Surgery, 56, 510–513.
Spasojevic, P., Zrilic, M., Panic, V., Stamenkovic, D., Seslija, S., & Velickovic, S. (2015). The Mechanical Properties of a Poly(methyl methacrylate) Denture Base Material Modified with Dimethyl Itaconate and Di-n-butyl Itaconate. International Journal of Polymer Science, 2015.
Surange, V. G., & Gharat, P. V. (2016). 3D Printing Process Using Fused Deposition Modelling (FDM). International Research Journal of Enineering and Technology, 03(03), 1403–1406.
Tontowi, A. E., Anggraeni, D., Saragih, H. T., Raharjo, K. P. N., & Utami, P. (2017). Experimental Study of 3D-Printable Biocomposite of [ HA / PMMA / Sericin ] Materials. Advance Materials Letters, 8(8), 857–861.
DOI: https://doi.org/10.31315/opsi.v14i2.5352
Refbacks
Secretariat:
Industrial Engineering Department
Faculty of Industrial Engineering, UPN "Veteran" Yogyakarta
d.a Jalan Babarsari 2 Tambakbayan Yogyakarta 55281
Telp. (0274) 486256
Website http://jurnal.upnyk.ac.id/index.php/opsi
email : jurnal.opsi@upnyk.ac.id
indexed by:
This work is Licensed Under a Creative Commons Attribution 4.0 International license.
View My Stats