3D Relief Cutting Process Using 2D Image Luminosity Grayscaling on The G-Weike WK1212 CNC Router Machine

Authors

  • Dewa Kusuma Wijaya (Sinta ID: 6663274) Universitas Dian Nuswantoro
  • Pramudi Arsiwi Universitas Dian Nuswantoro

DOI:

https://doi.org/10.31315/opsi.v14i2.5505

Keywords:

image litophane processing, image luminosity grayscaling, rapid prototyping, CNC router, relief cutting.

Abstract


 This study implements the image litophane processing method to convert 2D images into 3D designs using image luminosity grayscaling techniques, so that the design process as input data for CNC router machining operations can be carried out quickly to support rapid prototyping technology. Furthermore, this research will process the 3D design into a 3D engraving object with a relief cutting process using a G-Weike WK1212 CNC router machine. Using the image luminosity grascaling technique, the color composition value is obtained to change the grayscale color image by 33% red, 59% green and 11% blue with a luminosity value of 35% or 89 from the range of luminosity grayscale levels 0 - 255. These results are further increased by 50% to 172 or 67% of the range of grayscale luminosity levels L[0, 255] so that it will be at the ideal luminosity value for the relief cutting process. Using a luminosity value of 172 from a grayscale image, the actual depth value is 1.82mm from a total depth of 3mm, which of course the relief pattern will look good.

Author Biographies

Dewa Kusuma Wijaya, (Sinta ID: 6663274) Universitas Dian Nuswantoro

Fakultas Teknik, Program Studi Teknik Industri

Pramudi Arsiwi, Universitas Dian Nuswantoro

Fakultas Teknik, Program Studi Teknik Industri

References

Dewa, K. W, Herwin, S., & Dony, S. N. (2020). Optimasi Proses Cutting Mesin CNC Router G-Weike WK1212 dengan Metode Full Factorial Design dan Optimasi Plot Multi Respon. Jurnal Penelitian dan Aplikasi Sistem & Teknik Industri (PASTI), XIV(1), 1-14. https://doi.org/10.22441/pasti.2020.v14i1.001

Herwin, S., & Dewa, K. W. (2020). Optimasi Permesinan CNC Router untuk Proses Cutting Material Kayu Mahoni Menggunakan Mata Pahat End Mill 3mm Tungsten Carbide. Jurnal Teknik Industri, 10(3), 227-239. https://doi.org/10.25105/jti.v10i3.8408

Darmawanto, E., & Minardi, J. (2017). Pengembangan Produk Ukir Berbasis Desain 3 Dimensi Menggunakan Mesin Cnc Untuk Industri Mebel. Disprotek, 8(1), 67–80.

Ginting, R., Hadiyoso, S., & Aulia, S. (2017). Implementation 3-Axis CNC Router for Small Scale Industry. International Journal of Applied Engineering Research, 12(17), 6553–6558. http://www.ripublication.com

Lungu, A., Ispas, M., Brenci, L. M., Răcăşan, S., & Coşereanu, C. (2021). Comparative study on wood cnc routing methods for transposing a traditional motif from romanian textile heritage into furniture decoration. Applied Sciences (Switzerland), 11(15). https://doi.org/10.3390/app11156713

PW, A., & I, S. (2016). Aplication of Technology 4-Axis CNC Milling for Manufacturing Artistic Ring. Advances in Automobile Engineering, 01(S1), 1–6. https://doi.org/10.4172/2167-7670.s1-007

Setyaningsih, N. Y. D., Annudin, K., & Solekhan, S. (2021). The Influence of Ruggedness Reviews 3-Dimensional Photo Carving Media Based on 3-Axis CNC Router. Journal of Robotics and Control (JRC), 2(3), 212–216. https://doi.org/10.18196/jrc.2381

Sood, S., Duvedi, R. K., Bedi, S., & Mann, S. (2018). 3D representation and CNC machining of 2D digital images. Procedia Manufacturing, 26, 10–20. https://doi.org/10.1016/j.promfg.2018.07.001

Wu, Y., You, H., Zhao, D., & Liu, Y. (2012). CNC machining and simulation for relief of special-shaped stone. Advanced Materials Research, 468–471, 69–73. https://doi.org/10.4028/www.scientific.net/AMR.468-471.69

Yang, N. E., Lee, J. W., & Park, R. H. (2013). Depth Map Generation Using Local Depth Hypothesis for 2D-TO-3D Conversion. International Journal of Computer Graphics & Animation, 3(1), 1–15. https://doi.org/10.5121/ijcga.2013.3101

Yu, Y. (2017). Design and Simulation of CAD / CAM Embossing Process for Aluminum Alloy Thin- Wall Parts. 156(Meici), 671–676. https://doi.org/10.2991/meici-17.2017.132

Published

2021-12-21