Integrating Multiple Machine Learning Models to Predict Heart Failure Risk

Tuahta Hasiholan Pinem, Yan Rianto, M.

Abstract


The research aims to create and evaluate machine learning models for the prognosis of heart failure based on patient medical information. Various predictive models have been created employing algorithms like logistic regression, decision trees, random forests, K-nearest neighbors, naive Bayes, support vector machines (SVMs), neural networks, and ensemble voting classifiers. The dataset utilized comprises diverse clinical characteristics from patients diagnosed with heart failure. The data underwent division into training and testing sets in an 80:20 ratio. Metrics including accuracy, Cross Validation Score, and ROC_AUC Score score were used to assess the models' performance. The findings reveal that the Voting Classifier, amalgamating the Logistic Regression and Support Vector Classifier models, demonstrated superior performance with an accuracy of 88.04%, a cross-validation score of 91.01%, and a ROC_AUC score of 88.00%. Further scrutiny suggested that blood pressure and cholesterol levels serve as substantial indicators of heart failure. This study presents a notable advancement in the utilization of machine learning models for heart failure prediction by scrutinizing diverse algorithms and pinpointing the most pertinent clinical characteristics. These outcomes hint at the potential for the development of machine learning-driven clinical tools to facilitate early detection and enhance medical interventions.

Keywords


Machine Learning Models; Voting Classifier Algorithm; Feature Binning

Full Text:

PDF

References


B. Shahim, C. J. Kapelios, G. Savarese and L. H. Lund, "Global Public Health Burden of Heart Failure: An Updated Review," Cardiac Failur Review, vol. 11, no. Doi https://doi.org/10.15420/cfr.2023.05, 27 Juli 2023.

B. Tajik, A. Voutilainen, R. Sankaranarayanan, A. Lyytinen, J. Kauhanen, G. Y. Lip, T.-P. Tuomainen and M. Isanejad, "Frailty alone and interactively with obesity predicts heart failure: Kuopio Ischaemic Heart Disease Risk Factor Study," ESC Heart Failure, vol. 10, pp. 2354-2361, 10 May 2023.

S. Parveen, B. Zareini, A. Arulmurugananthavadivel, C. Kistorp, J. Faber, L. Køber, C. Hassager, T. B. Sørensen, C. Andersson, D. Zahir, K. Iversen, E. Wolsk, G. Gislason, F. Gaborit and M. Schou, "Association between early detected heart failure stages and future cardiovascular and non cardiovascular events in the elderly (Copenhagen Heart Failure Risk Study)," BMC Gereatrics, vol. 22 (230), pp. 1-10, 2022.

Z. Zhu, F.-R. Li, Y. Jia, Y. Li, D. Gu, J. Chen, H. Tian, J. Yang, H.-H. Yang, L.-H. Chen, K. Zhang, P. Yang, L. Sun, M. Shi, Y. Zhang, L.-Q. Qin and G.-C. Chen, "Association of Lifestyle With Incidence of Heart Failure According to Metabolic and Genetic Risk Status: A Population-Based Prospective Study," Circulation: Heart Failure, vol. 15 (9), pp. 851-859, September 2022.

C. Fonseca, "Diagnosis of heart failure in primary care," Heart Fail Rev, vol. 11 (2), pp. 95-107, Juni 2006.

H. Moroz, Y. Li and A. Marelli, "hART: Deep Learning-Informed Lifespan Heart Failure Risk Trajectories," medRxiv preprint, 5 September 2023.

D. Yu, S. Yang, R. Wang, K. Wang, W. Han, H. Wu, W. Wang and X. Wang, "Machine Learning in Heart Failure Research: A Bibliometric Analysis from 2003 to 2023," Research Square, pp. 1-55, Juni 2023.

F. S. Alotaibi, "Implementation of Machine Learning Model to Predict Heart Failure Disease," (IJACSA) International Journal of Advanced Computer Science and Applications, vol. 10 (6), pp. 261-268, 2019.

J. Lee, G. Kim, I. Ham, K. Ko, S. Park, Y.-J. Choi, D. O. Kang, J. Y. Choi, E. J. Park, S. Lee, S. Y. Roh, D.-I. Lee, J. O. Na, C. U. Choi, J. W. Kim, S.-W. Rha, C. G. Park, E. J. Kim and H. Ko, "Voice as a Biomarker to Detect Acute Decompensated Heart Failure: Pilot Study for the Analysis of Voice Using Deep Learning Models," medRxiv, pp. 1-44, 12 September 2023.

F. "Heart Failure Prediction Dataset," Kaggle, 2021. [Online]. Available: https://www.kaggle.com/datasets/fedesoriano/heart-failure-prediction. [Accessed Juni 2024].

M. Sulewski and A. Ozka, "Application of The Forest Classifier Methode for Desription of Movements of an Oscillator Forced by a Stochastic Series of Impulses," Journal of Theoretical and Applied Mechanics, vol. 61 (4), pp. 819-831, 2023.

J. C. Stoltzfus, "Logistic Regression: A Brief Primer," Academic Amergency Medicine, vol. 18, pp. 1099-1104, 2011.

L. Nguyen, "Tutorial on Support Vector Machine," Applied and Computational Mathematics, Vols. 6 (4-1), pp. 1-15, 2017.

S. Manzhos and M. Ihara, "Neural network with optimal neuron activation functions based on additive Gaussian process regression," arXiv, vol. 2, pp. 1-24, 19 Januari 2023.

V. D. Cong and T. T. Hiep, "Support vector machine-based object classification for robot arm system," International Journal of Electrical and Computer Engineering (IJECE), vol. 13 (5), pp. 5047-5053, Oktober 2023.

M. Thorat, S. Pandit and S. Balote, "Artificial Neural Network: A brief study," Asian Journal of Convergence in Technology, vol. VIII, no. III, pp. 12-16, 2022.

J.-h. Kim, "Ensemble Approach for Predicting the Diagnosis of Osteoarthritis Using Song Voting Classifier," medRxiv, pp. 1-22, 28 Januari 2023.

M. O. Adjei, J. B. H. Acquah, T. Frimpong and G. A. Salaam, "A systematic review of prediction accuracy as an evaluation measure for determining machine learning model performance in healthcare systems," medRxiv preprint, no. Doi: https://doi.org/10.1101/2023.06.01.23290837, pp. 1-23, 4 Juni 2023.

C. M. Bishop, "Pattern Recognition and Machine Learning," in Information Science and Statistics, New York, Springer New York, 2006, pp. XX, 778.

A. C. Müller and S. Guido, Introduction To Machine Learning With Python: A Guide for Data Scientists, Sebastopol, CA: O'Reilly Media, Inc., 2017.




DOI: https://doi.org/10.31315/telematika.v21i2.13006

DOI (PDF): https://doi.org/10.31315/telematika.v21i2.13006.g6669

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright of :
TELEMATIKA: Jurnal Informatika dan Teknologi Informasi
ISSN 1829-667X (print); ISSN 2460-9021 (online)


Dipublikasi oleh
Jurusan Teknik Informatika, UPN Veteran Yogyakarta
Jl. Babarsari 2 Yogyakarta 55281 (Kampus Unit II)
Telp: +62 274 485786
email: jurnaltelematika@upnyk.ac.id

 

Jurnal Telematika sudah diindeks oleh beberapa lembaga berikut:
 

 

 

 

 

Status Kunjungan Jurnal Telematika