PENCARIAN FILE PADA ANDROID BERBASIS SUFFIX TREE CLUSTERING DENGAN DUKUNGAN WORDNET

Authors

  • Adi Wibowo Teknik Informatika, Fakultas Teknologi Industri, Universitas Kristen Petra
  • Justinus Andjarwirawan Teknik Informatika, Fakultas Teknologi Industri, Universitas Kristen Petra
  • David Valentino Teknik Informatika, Fakultas Teknologi Industri, Universitas Kristen Petra

DOI:

https://doi.org/10.31315/telematika.v15i1.3061

Keywords:

Suffix Tree Clustering, multithreading, WordNet

Abstract

Finding a specific file in Android devices is not an easy task. Not many apps can search by files’ contents and find terms similarities between user’s queries and files’ terms. This research proposed using Suffix Tree Clustering to index files contents, and WordNet to expand user’s query terms. This research used waterfall as research methodology to built a search engine prototype. There are five steps to index files, i.e. listing and parsing, preprocessing, clustering, merging of clusters, and storing cluster data into database. If a user wants to search files, the prototype will expand user’s query terms using WordNet’s synsets and compare them with clusters stored in a database. The results of this research show that suffix tree clustering and multithreading can be used to index files’ contents, and term expansion can help users to find clusters similar with user’s query terms.

References

AlAgha, I., & Nafee, R. 2015. Investigating the Efficiency of WordNet as Background Knowledge for Document Clustering. Journal of Engineering Research and Technology 2(2), pp. 152-158.

Dang, Q., Zhang, J., Lu, Y., & Zhang, K. (2013). WordNet-Based Suffix Tree Clustering Algorithm. Proceedings of the 2013 International Conference on Information Science and Computer Applications (ISCA 2013), pp. 66-74. doi:10.2991/isca-13.2013.12 Hussain, A. 2012. Textual Similarity. Tesis, Informatics and Mathematical Modelling: Technical University of Denmark. Janruang, J. & Guha, S. 2011. Semantic Suffix Tree Clustering. Makalah disajikan dalam First IRAST International Conference on Data Engineering and Internet Technology (DEIT) Lhoussain, A.S., Hicham, G., & Abdellah, Y. 2015. Adaptating The Levenshtein Distance to Contextual Spelling Correction. International Journal of Computer Science and Applications. 12(1). pp. 127–133.

Marco, A. D., & Navigli, R. 2013. Clustering and Diversifying Web Search Results with Graph-Based Word Sense Induction. Computational Linguistics 39(3). pp. 709-754. doi:10.1162/coli_a_00148 Pate, S.D. 2003. UNIX Filesystems: Evolution, Design, and Implementation. Indianapolis: Wiley Publishing Inc.

Princeton University. 2010. About WordNet. http://wordnet.princeton.edu diakses 8 Juni 2017. Wirzenius, L., Oja, J., Stafford, S., & Weeks, A. 2005. Linux System Administrators Guide: Chapter 5. Using Disks and Other Storage Media. http://www.tldp.org/LDP/sag/html/filesystems.html diakses 8 Juni 2017 Zamir, O., & Etzioni, O. 1998. Web Document Clustering: A Feasibility Demonstration. Makalah disajikan dalam 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.

Downloads

Published

2018-04-30

Issue

Section

Artificial Intelligence