FUZZY TIME SERIES MODEL CHENG UNTUK MERAMALKAN VOLUME HASIL PANEN PADA TANAMAN GARUT
Abstract
Arrowroot is an alternative food substitute that can be used as processed flour or starch. This arrowroot can also produce several processed products such as arrowroot chips. The number of arrowroot requests from various regions causes the need for accurate calculations related to the volume of harvest from the arrowroot. Fuzzy logic is a method that can be used to predict arrowroot yields every period to meet market demand. The parameters used in this system are based on environmental data (temperature humidity, climate, altitude), genetic data (age and variety), and cultivation technique data (seed quality, fertilizing, planting media). The results of this study are in the form of an application to predict the volume of arrowroot crop yields based on these parameters. From the results of MAPE, get a percentage of 11.7% which indicates that the level of accuracy using the fuzzy cheng time series model is said to be useful for forecasting on arrowroot plants.
Keywords
Full Text:
PDFReferences
Chao-HungWang, Predicting tourism demand using fuzzy time series and hybrid grey theory Author links open overlay panel, Tourism Management, Volume 25, Issue 3, June 2004, Pages 367-374
Djaafar, T.F., Sarjiman dan A.B. Pustika. 2010. Pengembangan Budi Daya Tanaman Garut dan Teknologi Pengolahannya untuk Mendukung Ketahanan Pangan. Jurnal Litbang Pertanian, 29(1), 2010.
Susilowati., Endah, W. 2018. Pengaruh Asam Giberelat Dan Ukuran Stek Umbi Terhadap Pertumbuhan Vegetatif Tanaman Garut (Maranta Arundinaceae). Prosiding Seminar Nasional LPPM UPN “Veteran” Yogyakarta.
Gardner, F.P., Pearce, R.B., dan Mitchell, R.I. 1991. Fisiologi Tanaman Budidaya (diterjemahkan oleh Herawati Susilo). UI Press, Jakarta.
Gustriansyah, R. (2017). ANALISIS METODE SINGLE EXPONENTIAL SMOOTHING DENGAN BROWN EXPONENTIAL SMOOTHING PADA STUDI KASUS. 7–12.
Hayati, M. N., & Wahyuningsih, S. (2017). Peramalan Menggunakan Metode Fuzzy Time Series Cheng Forecasting Using Fuzzy Time Series Cheng Method. Jurnal EKSPONENSIAL, 8, 51–56.
Karasan, A., Sevim, İ., & Çinar, M. (2017). Fuzzy Time Series. Digital Marketing and Consumer Engagement, VIII(2), 157–190. https://doi.org/10.4018/978-1-5225-5187-4.ch010
Kusumadewi, S., dan Purnomo, H. (2013). Aplikasi Logika Fuzzy untuk Pendukung Keputusan. Yogyakarta: Graha Ilmu.Maharani, N. A. (2018). Implementasi Location Based Service (LBS) Untuk Safety Reporting System Menggunakan Metode A-GPS Dan WIFI Based Indoor Positioning. 28828.
Mey Lista Tauryawati, M Isa Irawan Perbandingan Metode Fuzzy Time Series Cheng dan Metode Box-Jenkins untuk Memprediksi IHSG., JURNAL SAINS DAN SENI POMITS Vol. 3, No. 2, (2014) ISSN: 2337-3539 (2301-9271 Print)
Rakhman, A. Z., Wulandari, H. N., Maheswara, G., & Kusumadewi, S. (2012). Fuzzy Inference System Dengan Metode Tsukamoto Sebagai Pemberi Saran Pemilihan Konsentrasi ( Studi Kasus : Jurusan Teknik Informatika Uii ), 2012(Snati), 15–16.
Ruey Chin Tsaur, Sunneng Sandino Berutu, Eko Sediyono, Priyo Sidik Sasongko, Peramalan Penjualan dengan Metode Fuzzy Time Series, Jurnal himsya Tech, Vol 11, No 1 (2015)
Ula, M. (2014). Implementasi Logika Fuzzy Dalam Optimasi Jumlah Pengadaan Barang Menggunakan Metode Tsukamoto ( Studi Kasus : Toko Kain My Text ). 1(2).
DOI: https://doi.org/10.31315/telematika.v17i1.3400
DOI (PDF): https://doi.org/10.31315/telematika.v17i1.3400.g2573
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Status Kunjungan Jurnal Telematika