VGG16 Transfer Learning Architecture for Salak Fruit Quality Classification

Rismiyati Rismiyati, Ardytha Luthfiarta


Purpose: This study aims to differentiate the quality of salak fruit with machine learning. Salak is classified into two classes, good and bad class.

Design/methodology/approach: The algorithm used in this research is transfer learning with the VGG16 architecture. Data set used in this research consist of 370 images of salak, 190 from good class and 180 from bad class. The image is preprocessed by resizing and normalizing pixel value in the image. Preprocessed images is split into 80% training data and 20% testing data. Training data is trained by using pretrained VGG16 model. The parameters that are changed during the training are epoch, momentum, and learning rate. The resulting model is then used for testing. The accuracy, precision and recall is monitored to determine the best model to classify the images.

Findings/result: The highest accuracy obtained from this study is 95.83%. This accuracy is obtained by using a learning rate = 0.0001 and momentum 0.9. The precision and recall for this model is 97.2 and 94.6.

Originality/value/state of the art: The use of transfer learning to classify salak which never been used before.


salak; transfer learning; VGG16; deep learning

Full Text:





  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright of :
TELEMATIKA: Jurnal Informatika dan Teknologi Informasi
ISSN 1829-667X (print); ISSN 2460-9021 (online)

Dipublikasi oleh
Jurusan Teknik Informatika, UPN Veteran Yogyakarta
Jl. Babarsari 2 Yogyakarta 55281 (Kampus Unit II)
Telp: +62 274 485786


Jurnal Telematika sudah diindeks oleh beberapa lembaga berikut:





Status Kunjungan Jurnal Telematika