Strawberry Fruit Disease Identification Using Digital Image Processing Using GLCM With Artificial Neural Network Method
Abstract
Purpose: This research aims to identify strawberry fruit diseases using digital image processing using GLCM with the backpropagation artificial neural network method.
Design/methodology/approach: Using images that have been preprocessed grayscale, crop, and resize and then processed using GLCM for traning using backpropagation artificial neural networks.
Findings/result: Based on 250 image data that is processed by GLCM and classified using a backpropagation artificial neural network, it can be concluded that the best accuracy rate is obtained from ReLU activation with a traning data accuracy value of 95% and test data accuracy of 54%.
Originality/value/state of the art: This research uses a combination of primary data with kaggle data by using a comparison of several experiments by changing the loss, optimizer and activation parameters.Keywords
Full Text:
PDFReferences
M. Effendi, F. Fitriyah, and U. Effendi, “Identifikasi Jenis dan Mutu Teh Menggunakan Pengolahan Citra Digital dengan Metode Jaringan Syaraf Tiruan”, Teknotan: Jurnal Industri Teknologi Pertanian, vol. 11, no. 2, pp. 67-76, 2017.
S. Bhahari and Rachmat, “Transformasi Citra Biner MenggunakanMetode Thresholding Dan Otsu Thresholding”, Jurnal Sistem Informasi Dan Teknologi Informasi, vol. 7, no. 2, pp. 195-203, 2018, doi: 10.36774/jusiti.v7i2.254.
M. R. Kumaseh, L. Latumakulitan, and N. Nainggolan, “Segmentasi Citra Digital Ikan Menggunakan Metode Thresholding”. Jurnal Ilmiah Sains, vol. 13, no. 1, pp. 75-78, 2013, doi: 10.35799/jis.13.1.2013.2057.
A. Pandeay and K. Jain, “An intelligent system for crop identification and classification from UAV images using conjugated dense convolutional neural network”, Computers and Electronics in Agriculture, vol. 192, 106543, 2022, doi: 10.1016/j.compag.2021.106543.
Rikendry and A. Maharil, “Perbandingan Arsitektur VGG16 Dan ResNet50 Untuk Rekognisitulisan Tangan Aksara Lampung”, Jurnal Informatika dan Rekayasa Perangkat Lunak (JATIKA), vol. 3, no. 2, pp. 236-243, 2022, doi: 10.33365/jatika.v3i2.2030.
R. Prabowo, A. Roudhoh, and Afifah, “Klasifikasi Image Tumbuhan Obat Sirih dan BinahongMenggunakan Metode Convolutional Neural Network(CNN)”, Jurnal Komputasi, vol. 10, no. 2, pp. 48-54, 2022.
S. Singh, D. Srivastava, and S. Agarwal, “GLCM and Its Application in Pattern Recognition”, 2017 5th International Symposium on Computational and Business Intelligence (ISCBI), pp. 20-25, 2017, doi: 10.1109/ISCBI.2017.8053537.
M. A. Rahman, N. Hidayat, and A. A. Supianto, “Komparasi Metode Data Mining K-Nearest Neighbor Dengan Naïve Bayes Untuk Klasifikasi Kualitas Air Bersih (Studi Kasus PDAM Tirta Kencana Kabupaten Jombang)”, Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 2, no. 12, pp. 6346-6353, 2018.
K. Adi, C. E. Widodo, A. P. Widodo, R. Gernowo, A. Pamungkas, and R. A. Syifa, “Detection Lung Cancer Using Gray Level Co-Occurrence Matrix (GLCM) and Back Propagation Neural Network Classification”. Journal of Engineering Science and Technology Review, vol. 11, no. 2, pp. 8-12, 2018.
R. G. F. Junior, N. Hidayat, and A. A. Soebroto, “Prediksi Omzet Penjualan Jersey menggunakan Metode Regresi Linier (Studi Kasus CV. Quattro Project Bululawang)”, Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 6, no. 10, pp. 4598-4603, 2022.
A. Khoirunnisa, Adiwijaya, and A. A. Rohmawati, "Implementing Principal Component Analysis and Multinomial Logit for Cancer Detection based on Microarray Data Classification," 2019 7th International Conference on Information and Communication Technology (ICoICT), pp.1-6, 2019, doi: 10.1109/ICoICT.2019.8835320.
R. D. Jonathan, M. J. Hasugian, E. M. Sartika, “Perbandingan Deteksi Letak Polip pada Citra Colonoscopy menggunakan CNN dengan Arsitektur RetinaNet”, ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, vol. 10, no. 4, pp. 946 – 960, 2022.
F. Rahmadani, A. M. H. Pardede, and Nurhayati, “Jaringan Syaraf Tiruan Prediksi Jumlah Pengiriman Barang Menggunakan Metode Backpropagation (Studi Kasus: Kantor Pos Binjai)”, Jurnal Teknik Informatika Kaputama (JTIK), vol. 5, no. 1, pp. 100-106, 2021.
S. Qiu, X. Xu, and B. Cai, "FReLU: Flexible Rectified Linear Unitsfor Improving Convolutional Neural Networks", 2018 24th International Conference on Pattern Recognition (ICPR), pp. 1223-1228, 2018, doi: 10.1109/ICPR.2018.8546022.
J. Sanjaya, and M. Ayub, “Augmentasi Data Pengenalan Citra Mobil Menggunakan Pendekatan Random Crop, Rotate, dan Mixup”, Jurnal Teknik Informatika dan Sistem Informasi, vol. 6, no. 2, pp. 311-323, 2020
A. Willyanto, D. Alamsyah, and H. Irsyad, “Identifikasi Tulisan Tangan AksaraJepang Hiragana Menggunakan Metode CNN Arsitektur VGG-16”, Jurnal Algoritme, vol. 2, no. 1, pp. 1–11, 2021.
P. N. Andono, E. H. Rachmawanto, “Deteksi Karakter Hiragana Menggunakan Metode Convolutional Neural Network”, Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI, vol. 11, no. 3, pp. 183-192, 2022, doi: 10.23887/janapati.v11i3.50144.
DOI: https://doi.org/10.31315/telematika.v21i1.9861
DOI (PDF): https://doi.org/10.31315/telematika.v21i1.9861.g6672
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Status Kunjungan Jurnal Telematika