Formulating Nutritious Wet Noodles with Spirulina platensis: Exploring Proximate Composition, Antioxidant Activity, and Consumer Preferences
DOI:
https://doi.org/10.31315/eksergi.v22i1.13697Keywords:
antioxidant, microalgae, nutritious food, spirulina, wet noodlesAbstract
The incorporation of Spirulina platensis into food products has been extensively explored. In this study, wet noodles were enriched with spirulina at three different concentrations: 1% (P1), 5% (P2) and 10% (P3). Sensory and hedonic evaluations, proximate composition and antioxidant properties were assessed. Overall, formulations P1 and P2 were significantly preferred (p < 0.05) in terms of appearance and aroma compared to the control (P0). Additionally, the texture and taste scores of spirulina-enriched wet noodles were higher (p < 0.05) than those of the control. Among all treatments, P1 emerged as the most favourable formulation (p < 0.05) for aroma, texture, and taste in the hedonic test. Moreover, the spirulina supplementation had significant effect on the protein and fat content (p < 0.05) compared to the control noodles. Furthermore, the antioxidant activity of the spirulina wet noodles increased in a dose dependent manner. The IC50 values for DPPH radical scavenging activity were 339.749 ppm for the control (P0), and 61.473 ppm, 39.965 ppm, and 27.439 ppm for P1, P2, and P3, respectively. These results suggest that fortifying wet noodles with Spirulina platensis not only improves the sensory attributes but also enhances the nutritional quality and functional value.References
Ahda, M., Suhendra, & Permadi, A. (2024). Spirulina platensis microalgae as high protein-based products for diabetes treatment. Food Reviews International, 40(6), 1796–1804. https://doi.org/10.1080/87559129.2023.2238050
Ahnan‐Winarno, A. D., Cordeiro, L., Winarno, F. G., Gibbons, J., & Xiao, H. (2021). Tempeh: A semicentennial review on its health benefits, fermentation, safety, processing, sustainability, and affordability. Comprehensive Reviews in Food Science and Food Safety, 20(2), 1717–1767. https://doi.org/10.1111/1541-4337.12710
Aleksandrovna, G. G., Viktorovna, N. L., & Dementievna, Z. I. (2019). Spirulina as a protein ingredient in a sports nutrition drink. In Atlantis Press (Ed.), 4th International Conference on Innovations in Sports, Tourism and Instructional Science (pp. 162–166). Atlantis Press.
Andrade, L. M. (2018). Chlorella and Spirulina microalgae as sources of functional foods, nutraceuticals, and food supplements; an overview. MOJ Food Processing & Technology, 6(1). https://doi.org/10.15406/mojfpt.2018.06.00144
Anvar, A. A., & Nowruzi, B. (2021). Bioactive properties of spirulina: A review. Microbial Bioactives, 4(1), 134–142. https://doi.org/10.25163/microbbioacts.412117B0719110521
Asghari, A., Fazilati, M., Latifi, A. M., Salavati, H., & Choopani, A. (2016). A review on antioxidant properties of Spirulina. Journal of Applied Biotechnology Reports, 3(1), 345–351.
BSN. (2015). SNI 2987:2015 tentang Mie Basah. Jakarta: Badan Standardisasi Nasional.
BSN. (2010). SNI 2354.1:2010 tentang Kadar Abu. Jakarta: Badan Standardisasi Nasional.
BSN. (2011). SNI 2346:2011 tentang Petunjuk pengujian organoleptik dan atau sensori pada produk perikanan. Jakarta: Badan Standardisasi Nasional.
BSN. (2015). SNI 2354.2:2015 tentang Cara Uji Kimia-Bagian 2: Penguji Kadar Air Pada Produk Perikanan. Jakarta: Badan Standardisasi Nasional.
BSN. (2017). SNI 2354.3-2017 tentang Uji Kadar Lemak. Jakarta: Badan Standardisasi Nasional.
Bortolini, D. G., Maciel, G. M., Fernandes, I. de A. A., Pedro, A. C., Rubio, F. T. V., Branco, I. G., & Haminiuk, C. W. I. (2022). Functional properties of bioactive compounds from Spirulina spp.: Current status and future trends. Food Chemistry: Molecular Sciences, 5, 100134. https://doi.org/10.1016/j.fochms.2022.100134
Boutin, R., Munnier, E., Renaudeau, N., Girardot, M., Pinault, M., Chevalier, S., Chourpa, I., Clément-Larosière, B., Imbert, C., & Boudesocque-Delaye, L. (2019). Spirulina platensis sustainable lipid extracts in alginate-based nanocarriers: An algal approach against biofilms. Algal Research, 37, 160–168. https://doi.org/10.1016/j.algal.2018.11.015
Cardoso, L. G., Lemos, P. V. F., de Souza, C. O., Oliveira, M. B. P. P., & Chinalia, F. A. (2022). Current advances in phytoremediation and biochemical composition of Arthrospira (Spirulina) grown in aquaculture wastewater. Aquaculture Research, 53(14), 4931–4943. https://doi.org/10.1111/are.15996
Christwardana, M., Handayani, A. S., Febriyanti, E., Hadiyanto, H., & Nefasa, A. N. (2023). Proximate analysis and hedonic test on dried noodle with the addition of Spirulina platensis microalgae as a high protein food. Journal of Bioresources and Environmental Sciences, 2(1), 31–38. https://doi.org/10.14710/jbes.2023.17445
Coleman, B., Van Poucke, C., Dewitte, B., Ruttens, A., Moerdijk-Poortvliet, T., Latsos, C., De Reu, K., Blommaert, L., Duquenne, B., Timmermans, K., van Houcke, J., Muylaert, K., & Robbens, J. (2022). Potential of microalgae as flavoring agents for plant-based seafood alternatives. Future Foods, 5, 100139. https://doi.org/10.1016/j.fufo.2022.100139
Daryono, E. D., & Hutasoit, G. F. (2024). Ekstraksi minyak atsiri jahe (Zingiber officinale) dengan proses distilasi: pengaruh jenis jahe dan metode distilasi. Eksergi Jurnal Ilmiah Teknik Kimia, 21(2), 55. https://doi.org/10.31315/e.v21i2.11625
Devi, A., Sindhu, R., & Khatkar, B. S. (2020). Effect of fats and oils on pasting and textural properties of wheat flour. Journal of Food Science and Technology, 57(10), 3836–3842. https://doi.org/10.1007/s13197-020-04415-4
Dewajani, H., Rachmawati, D., Nabilla, C. B., & Novianti, F. T. (2024). Preparation of bioplastic from corn cob starch with the addition of essential oils as antioxidants. Eksergi Jurnal Ilmiah Teknik Kimia, 21(3), 194–201. https://doi.org/10.31315/e.v21i3.12797
Dewi, R. N., Budiadnyani, I. G. A., Febrianti, D., & Putrivenn, D. F. (2024). Pengujian organoleptik dan deteksi logam berat pada bahan baku dan produk bakso ikan lemuru (Sardinella lemuru) dari Selat Bali. Jurnal Pascapanen dan Bioteknologi Kelautan dan Perikanan, 18(2), 147. https://doi.org/10.15578/jpbkp.v18i2.973
Dewi, R. N., Mahreni, Nur, M. M. A., Siahaan, A. A., & Ardhi, A. C. (2022). Enhancing the biomass production of microalgae by mixotrophic cultivation using virgin coconut oil mill effluent. Environmental Engineering Research, 28(2), 220059–0. https://doi.org/10.4491/eer.2022.059
Dewi, R. N., Muncani, N. P. A. D., & Putri, N. P. D. K. (2024). Analisis penerapan good manufacturing practices (GMP): Studi kasus di dua industri pembekuan ikan di Denpasar Bali. Jurnal Perikanan Unram, 14(3), 1609–1620. https://doi.org/10.29303/jp.v14i3.925
Dewi, R. N., Nur, M. M. A., Astuti, R. P., Andriyanto, W., Panjaitan, F. C. A., Febrianti, D., Budiadnyani, I. G. A., Utari, S. P. S. D., Samanta, P. N., & Perceka, M. L. (2024). Bioremediation of seafood processing wastewater by microalgae: Nutrient removal, and biomass, lipid and protein enhancement. Environmental Engineering Research, 29(6), 230673–0. https://doi.org/10.4491/eer.2023.673
Dewi, R. N., Panjaitan, F. C. A., Febriyanti, D., Perceka, M. L., Khairunnisa, A., Farida, I., Budiadnyani, I. G. A., Utari, S. P. S. D., Samanta, P. N., Astiana, I., & Cesrani, M. (2024). Potential of Spirulina sp. for remediating pollutants in aquaculture wastewater and producing phycocyanin. Indonesian Fisheries Research Journal, 30(1), 27–35.
Dewi, R. N., Putri, N. A., Fauziah, S., & Saputra, A. (2024). Mikroalga: Sumber biomassa hayati unggul untuk masa depan berkelanjutan (1st ed., Vol. 1). Deepublish. https://deepublishstore.com/produk/buku-mikroalga-sumber-biomassa-hayati-unggul-untuk-masa-depan-berkelanjutan/?srsltid=AfmBOoqKcurYf0phu8dK5ulzJoP_WYzjjxULXyFkRc25YSjpzfgsuZvj
El-Anany, A., A. Althwab, S., Alhomaid, R. M., F. M. Ali, R., & M. Mousa, H. (2023). Effect of spirulina (Arthrospira platensis) powder addition on nutritional and sensory attributes of chicken mortadella. Italian Journal of Food Science, 35(4), 1–11. https://doi.org/10.15586/ijfs.v35i4.2368
Ersyah, D., Jaziri, A. A., & Setijawati, D. (2022). Effect of spirulina (Arthrospira platensis) powder on the physico-chemical and sensory characterization of dry noodle. Journal of Aquaculture and Fish Health, 11(3), 277–288. https://doi.org/10.20473/jafh.v11i3.20908
Farida, I., Dewi, R.N., & Ramadhani, A.R. (2023). Total bacteria and formalin analysis on fish and fishery products at traditional markets Negara, Jembrana, Bali. Buletin Jalanidhitah Sarva Jivitam, 5(2), 167–177. https://doi.org/10.15578/bjsj.v5i2.13156
Fradinho, P., Niccolai, A., Soares, R., Rodolfi, L., Biondi, N., Tredici, M. R., Sousa, I., & Raymundo, A. (2020). Effect of Arthrospira platensis (spirulina) incorporation on the rheological and bioactive properties of gluten-free fresh pasta. Algal Research, 45, 101743. https://doi.org/10.1016/j.algal.2019.101743
Grosshagauer, S., Kraemer, K., & Somoza, V. (2020). The true value of Spirulina. Journal of Agricultural and Food Chemistry, 68(14), 4109–4115. https://doi.org/10.1021/acs.jafc.9b08251
Hansen, H., & Sutriningsih. (2018). Antioxidant activities test with DPPH method katuk leaves extract (Sauropus androgynus (L.) Merr) and stability test effect of emulsifier concentration stearic acid and riethanolamine on cream formulation. Indonesia Natural Research Pharmaceutical Journal, 3(1), 119–130.
Hassanzadeh, H., Ghanbarzadeh, B., Galali, Y., & Bagheri, H. (2022). The physicochemical properties of the spirulina‐wheat germ‐enriched high‐protein functional beverage based on pear‐cantaloupe juice. Food Science & Nutrition, 10(11), 3651–3661. https://doi.org/10.1002/fsn3.2963
Hernández-López, I., Alamprese, C., Cappa, C., Prieto-Santiago, V., Abadias, M., & Aguiló-Aguayo, I. (2023). Effect of spirulina in bread formulated with wheat flours of different alveograph strength. Foods, 12(20), 3724. https://doi.org/10.3390/foods12203724
Jia, X., Cui, H., Qin, S., Ren, J., Zhang, Z., An, Q., Zhang, N., Yang, J., Yang, Y., Fan, G., & Pan, S. (2024). Characterizing and decoding the key odor compounds of Spirulina platensis at different processing stages by sensomics. Food Chemistry, 461, 140944. https://doi.org/10.1016/j.foodchem.2024.140944
Junianto. (2022). Effect of spirulina flour on the composition of proximate donate. Juvenil Journal, 3(3), 73–78.
Maemunah, S., Hutomo, G. S., Noviyanty, A., & Rahim, A. (2022). Physicochemical, functional and sensory characteristics of prebiotic noodles from sago starch (Metroxylon sp.) double modification results. Jurnal Pengolahan Pangan, 7(2), 80–91.
Mazareta, S., Sulistiawati, E., Evitasari, R. T., Setyawan, M., & Hakika, D. C. (2024). Pembuatan serbuk fikobiliprotein dari Spirulina platensis melalui proses freezing-thawing dan freeze-drying. Eksergi Jurnal Ilmiah Teknik Kimia, 21(3), 220. https://doi.org/10.31315/e.v21i3.12453
Muresan, C., Pop, A., Socaci, S., Man, S., Fărcas, A., Nagy, M., & Rus, B. (2016). The influence of different proportions of spirulina (Arthrospira plantensis) on the quality of pasta. Journal of Agroalimentary Processes and Technologies, 22(1), 24–27.
Ntau, L. A., Labatjo, R., & Arbie, F. Y. (2022). Testing chemical properties on wet noodles has been suspected with plush flour (Rastrelliger sp.). Jambura Journal, 4(1), 397–405.
Paraskevopoulou, A., Kaloudis, T., Hiskia, A., Steinhaus, M., Dimotikali, D., & Triantis, T. M. (2024). Volatile profiling of spirulina food supplements. Foods, 13(8), 1257. https://doi.org/10.3390/foods13081257
Paula da Silva, S., Ferreira do Valle, A., & Perrone, D. (2021). Microencapsulated Spirulina maxima biomass as an ingredient for the production of nutritionally enriched and sensorially well-accepted vegan biscuits. LWT, 142, 110997. https://doi.org/10.1016/j.lwt.2021.110997
Pradana, Y. S., Dewi, R. N., Di Livia, K., Arisa, F., Rochmadi, Cahyono, R. B., & Budiman, A. (2020). Advancing biodiesel production from microalgae Spirulina sp. by a simultaneous extraction-transesterification process using palm oil as a co-solvent of methanol. Open Chemistry, 18(1), 833–842. https://doi.org/10.1515/chem-2020-0133
Pratama, A. I., Lioe, H. N., Yuliana, N. D., & Ogawa, M. (2022). Umami compounds present in umami fraction of acid-hydrolyzed spirulina (Spirulina platensis). Algal Research, 66, 102764. https://doi.org/10.1016/j.algal.2022.102764
Putri, N. A., Dewi, R. N., Lestari, R., Yuniar, R. A., Ma’arif, L. M., & Erianto, R. (2023). Microalgae as a bioremediation agent for palm oil mill effluent: Production of biomass and high added value compounds. Jurnal Rekayasa Kimia & Lingkungan, 18(2), 149–161. https://doi.org/10.23955/rkl.v18i2.34018
Putri, W. A., Al Maqsidi, M. A., Achmad, Z., Hadi, F., & Nur, M. M. A. (2023). Pengaruh pelarut, rasio pelarut, dan waktu ekstraksi terhadap astaxanthin dari Haematococcus sp. dengan bantuan ultrasound assisted extraction. Eksergi, 20(3), 156. https://doi.org/10.31315/e.v20i3.10733
Ravi, M., De, S. L., Azharuddin, S., & Paul, S. F. D. (2010). The beneficial effects of spirulina focusing on its immunomodulatory and antioxidant properties. Nutrition and Dietary Supplements, 2, 78–83.
Sari, B. L., Dewi, E. N., & Fahmi, A. S. (2022). Pengaruh penambahan Spirulina platensis sebagai sumber protein nabati pada daging analog bagi vegetarian. Jurnal Mutu Pangan: Indonesian Journal of Food Quality, 9(2), 76–83. https://doi.org/10.29244/jmpi.2022.9.2.76
Seghiri, R., Kharbach, M., & Essamri, A. (2019). Functional composition, nutritional properties, and biological activities of Moroccan Spirulina microalga. Journal of Food Quality, 2019, 1–11. https://doi.org/10.1155/2019/3707219
Syaichurrozi, I., Toron, Y. S., Dwicahyanto, S., & Wardalia, W. (2023). Pengaruh perbedaan jenis dan konsentrasi sumber nitrogen (NaNO3 dan urea) terhadap produksi biomasa Spirulina platensis. Eksergi, 20(2), 112. https://doi.org/10.31315/e.v20i2.9367
Syaichurrozi, I., Wardalia, W., Dwicahyanto, S., & Toron, Y. S. (2022). Pengaruh variasi konsentrasi NaNO3 pada medium raoof terhadap kultivasi Spirulina platensis. Eksergi, 19(1), 15. https://doi.org/10.31315/e.v19i1.6581
Urlass, S., Wu, Y., Nguyen, T. T. L., Winberg, P., Turner, M. S., & Smyth, H. (2023). Unravelling the aroma and flavour of algae for future food applications. Trends in Food Science & Technology, 138, 370–381. https://doi.org/10.1016/j.tifs.2023.06.018
Utari, P., Dewi, R. N., & Ilmiyanti, D. (2023). Organoleptic, proximate and heavy metal analysis of Bruguiera gymnorrhiza mangrove chips. Journal Perikanan, 13(4), 979–990.
Wang, F., Yu, X., Cui, Y., Xu, L., Huo, S., Ding, Z., Hu, Q., Xie, W., Xiao, H., & Zhang, D. (2023). Efficient extraction of phycobiliproteins from dry biomass of Spirulina platensis using sodium chloride as extraction enhancer. Food Chemistry, 406, 135005. https://doi.org/10.1016/j.foodchem.2022.135005
Wijayati, P. D., Harianto, N., & Suryana, A. (2019). Permintaan pangan sumber karbohidrat di Indonesia. Analisis Kebijakan Pertanian, 17(1), 13. https://doi.org/10.21082/akp.v17n1.2019.13-26
Yuliani, Winarni Agustini, T., & Nurcahya Dewi, E. (2020). Intervensi O. bacilicum terhadap kandungan protein dan karakteristik sensorik S. platensis. Jurnal Pengolahan Hasil Perikanan Indonesia, 23(2), 225–235. https://doi.org/10.17844/jphpi.v23i2.31126
Zen, C. K., Tiepo, C. B. V., da Silva, R. V., Reinehr, C. O., Gutkoski, L. C., Oro, T., & Colla, L. M. (2020). Development of functional pasta with microencapsulated spirulina: Technological and sensorial effects. Journal of the Science of Food and Agriculture, 100(5), 2018–2026. https://doi.org/10.1002/jsfa.10219
Zeng, Q., Wang, J. J., Zhang, Y., Song, Y., Liang, J., & Zhang, X. (2020). Recovery and identification bioactive peptides from protein isolate of Spirulina platensis and their in vitro effectiveness against oxidative stress‐induced erythrocyte hemolysis. Journal of the Science of Food and Agriculture, 100(9), 3776–3782. https://doi.org/10.1002/jsfa.10408
Žilić, S., Barać, M., Pešić, M., Dodig, D., & Ignjatović-Micić, D. (2011). Characterization of proteins from grain of different bread and durum wheat genotypes. International Journal of Molecular Sciences, 12(9), 5878–5894. https://doi.org/10.3390/ijms12095878
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License(CC BY SA 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Eksergi allows authors retain the copyright and full publishing rights without restrictions.