The Effect of Ammonium Sulfate Concentrations on The Size Distributions of NPK-Fertilizer Granules in a Rotating Drum Granulator

Authors

  • Meiga Putri Wahyu Hardhianti Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada
  • Ivan Sebastian Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada
  • Wiratni Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada

DOI:

https://doi.org/10.31315/eksergi.v22i2.14256

Keywords:

granulation, fertilizer, ammonium sulfate, Stoke’s number

Abstract

The granulation process is important in pharmaceuticals, detergents, and fertilizers. It consists of enlarging the particle size to create granules with specific properties. This study examined the wet granulation process for NPK fertilizers and investigated the effect of binder solutions, particularly ammonium sulfate (ZA) concentrations, on the distribution of granule sizes. The granulation process was conducted in a rotating drum granulator with varied NPK ratios (28-6-6, 20-20-8, 18-16-20, and 15-15-15) with amounts of binder (10 ml or 20 ml of 15% ZA solution or pure water). Granule sizes were analyzed using Image Pro Plus software, and Stoke’s number was calculated to establish a correlation between the average granule radius and Stoke’s number. The results showed that ammonium sulfate improved granulation, leading to larger granule size and more consistent size distribution in various NPK formulations than water-bond granules. Furthermore, a higher liquid-to-solid ratio generally increases granule size, resulting in a broader size distribution. The study demonstrated a robust correlation (R² = 0.95) between Stoke's number and the average granule radius, indicating that Stoke's number served as a generalized parameter of the granulation process for various NPK formulations and binder types.

References

Adetayo, A. A., Litster, J. D., & Desai, M. (1993). The Effect of Process Parameters on Drum Granulation of Fertilizers with Broad Size Distributions. Chemical Engineering Science, 48(23), 3951–3961. https://doi.org/10.1016/0009-2509(93)80374-Y

Adetayo, A. A., Litster, J. D., Pratsinis, S. E., & Ennis, B. J. (1995). Population balance modelling of drum granulation of materials with wide size distribution. Powder Technology, 82, 37–49. https://doi.org/10.1016/0032-5910(94)02896-V

Amelia, N., Akhwan, R., & Yuliestyan, A. (2020). Influence of Particle Size and Chemical Activation on Rice Husk Biochar as Slow Release Fertilizer. Eksergi, 17(2), 73–78. https://doi.org/https://doi.org/10.31315/e.v17i2.3730

Dhenge, R. M., Fyles, R. S., Cartwright, J. J., Doughty, D. G., Hounslow, M. J., & Salman, A. D. (2010). Twin screw wet granulation: Granule properties. Chemical Engineering Journal, 164(2–3), 322–329. https://doi.org/10.1016/j.cej.2010.05.023

Handayani, D. P., Sediawan, W. B., Timotius, D., & Puspitasari, M. (2023). Distribusi Ukuran Granul dari Tepung Singkong dengan Tepung Tapioka Sebagai Pengikat pada Rotary Drum Granulator. Eksergi, 20(2), 52–57. https://doi.org/https://doi.org/10.31315/e.v20i2.9170

Iveson, S. M., Litster, J. D., Hapgood, K., & Ennis, B. J. (2001). Nucleation, growth and breakage phenomena in agitated wet granulation processes: a review. Powder Technology, 117, 3–39. https://doi.org/10.1016/S0032-5910(01)00313-8

Khalil Abu Rabeah, Ruben Socolovsky, Natalia Geinik, Ayoub Alhowashla, & Joseph Lati. (2020). Binders for The granulation of Fertilizers (Patent 20200055795A1). U.S. Patent and Trademark Office. https://patents.google.com/patent/US20200055795A1/en

Meng, W., Rao, K. S., Snee, R. D., Ramachandran, R., & Muzzio, F. J. (2019). A comprehensive analysis and optimization of continuous twin-screw granulation processes via sequential experimentation strategy. International Journal of Pharmaceutics, 556, 349–362. https://doi.org/10.1016/j.ijpharm.2018.12.009

Roy, P., Vashishtha, M., Khanna, R., & Subbarao, D. (2009). Size-dependent coalescence kernel in fertilizer granulation-A comparative study. Particuology, 7(6), 445–450. https://doi.org/10.1016/j.partic.2009.09.005

Sastra, R. A., Adiarto, T., Prasetyo, A. B., Darmokoesoemo, H., Indrasari, D., & Putri, M. (2023). Pemanfaatan Nanokitosan Sebagai Coating Agent dalam Pembuatan Pupuk NPK Berbasis Control. Eksergi, 20(3), 195–199. https://doi.org/https://doi.org/10.31315/e.v20i3.10699

Szulc, A., Skotnicka, E., Gupta, M. K., & Królczyk, J. B. (2024). Powder agglomeration processes of bulk materials – A state of the art review on different granulation methods and applications. Powder Technology, 431. https://doi.org/10.1016/j.powtec.2023.119092

Walker, G. M., Holland, C. R., Ahmad, M. N., Fox, J. N., & Kells, A. G. (2000). Drum granulation of NPK fertilizers. Powder Technology, 107, 282–288. https://doi.org/10.1016/S0032-5910(99)00253-3

Walker, G. M., Holland, C. R., Ahmad, M. N., Fox, J. N., & Kells, A. G. (2001). Prediction of fertilizer granulation: Effect of binder viscosity on random coalescence model. Industrial and Engineering Chemistry Research, 40(9), 2128–2133. https://doi.org/10.1021/ie000647s

Xue, B., Huang, H., Mao, M., & Liu, E. (2017). An investigation of the effect of ammonium sulfate addition on compound fertilizer granulation. Particuology, 31, 54–58. https://doi.org/10.1016/j.partic.2016.04.004

Downloads

Published

2025-05-18

How to Cite

Hardhianti, M. P. W., Sebastian, I., & Wiratni. (2025). The Effect of Ammonium Sulfate Concentrations on The Size Distributions of NPK-Fertilizer Granules in a Rotating Drum Granulator. Eksergi, 22(2), 66–71. https://doi.org/10.31315/eksergi.v22i2.14256

Issue

Section

Artikel