Optimization of Rotation Speed, Disc Diameter, and Lighting Time in Batik Waste Treatment Using Rotary Algae Biofilm Reactor (RABR) with Ulva sp.

Authors

  • Sonya Hakim Raharjo Department of Chemical Engineering, Faculty of Engineering, Universitas Jember, Jember, East Java, 68121, Indonesia
  • Bekti Palupi Research Center for Biobased Chemical Product, Jember, East Java, 68121, Indonesia
  • Rangga Yudha Syaifullah Department of Chemical Engineering, Faculty of Engineering, Universitas Jember, Jember, East Java, 68121, Indonesia
  • Yohanes Department of Chemical Engineering, Faculty of Engineering, Universitas Jember, Jember, East Java, 68121, Indonesia
  • Ratri Sekaringgalih Department of Chemical Engineering, Faculty of Engineering, Universitas Jember, Jember, East Java, 68121, Indonesia
  • Nurul Hidayati Bioprocess Laboratory, Chemical Engineering, Universitas Jember, Jember, East Java, 68121, Indonesia

DOI:

https://doi.org/10.31315/eksergi.v22i3.15084

Keywords:

batik waste, BOD, COD, RABR, Ulva sp

Abstract

Batik is one of the cultural heritages in Indonesia that must be maintained and preserved. The batik industry process itself produces liquid waste that comes from the coloring processing, washing, wax removing, also rinsing. Batik waste, if not treated properly, can harm the environment. Various studies have shown that effluent treatment using the Rotary Algae Biofilm Reactor (RABR) method is promising. This research focuses on improving the RABR design and optimal conditions for treating batik wastewater, as well as utilizing the synergy between batik production and Ulva sp. The variables used in this research are the rotation speed of 20, 30, and 40 rpm, the lightning time for 0, 6, and 12 hours, and the disk diameter size of 9, 11, and 13 cm. The parameters that analyzed are BOD, COD, and pH levels. Waste treatment optimization in this research uses the RSM with a combination of Design Expert 13 software. Based on the results, the most optimal batik wastewater treatment variable is when the disk diameter is 10.306 mm, the rotation speed is 20 rpm, and the lightning time is 7.805 hours, yielding response values of 55.673 mg/L for BOD, 25.538 mg/L for COD, and 10.406 for pH.

References

Amelia., D., Elystia., S., & Sasmita., A. (2021). Penyisihan NH3 Pada Limbah Cair Domestik dengan Rotary Alga Biofilm Reactor. Jurnal Online Mahasiswa (JOM) FT, 8(1), 1–6.

Apriyani, N. (2018). Industri Batik: Kandungan Limbah Cair dan Metode Pengolahannya. Media Ilmiah Teknik Lingkungan, 3(1), 21–29. https://doi.org/10.33084/mitl.v3i1.640

Arofah, R. N., Rahmawati, Y., Taufany, F., & Nurkhamidah, S. (2025). Fabrication and Characterization of Psf-TiO 2 / GO Membranes for Photocatalytic Decomposition of Dyes in Batik Liquid Waste. Eksergi, 22(2), 80–90.

Cara Uji COD Dengan Refluks Tertutup Secara Spektrofotometri, Standar Nasional Indonesia 1 (2019).

Deviram, G., Pradeep, K. V, & Prasuna, R. G. (2011). Purification of waste water using Algal species. European Journal of Experimental Biology, 1(3), 216–222.

Elystia., S., Hasti., A., & Muria., R. (2022). Pengolahan Limbah Minyak Sawit Menggunakan Chlorella sp. yang Diimobilisasi dalam Flat-Fotobioreaktor. Jurnal Sains Dan Teknologi, 11(1), 67–76.

Elystia, S., Andrio, D., Fitria, D., Sasmita, A., & Setianingsih, R. (2024). Pengembangan Rotary Algae Biofilm Reactor (RABR) Sistem Semikontinu untuk Produksi Biomassa dan Kadar Lipid, serta Penyisihan Polutan Organik Konsentrasi Tinggi. Jurnal Ilmu Lingkungan, 22(3), 693–703. https://doi.org/10.14710/jil.22.3.693-703

Elystia, S., Nasution, F. H. M., & Sasmita, A. (2023). Rotary Algae Biofilm Reactor (RABR) using microalgae Chlorella sp. for tofu wastewater treatment. Materials Today: Proceedings, 87, 263–271. https://doi.org/10.1016/j.matpr.2023.03.206

Fatiha, I. I., & Irawanto, R. (2021). Pengaruh limbah cair home-industri batik terhadap kemampuan Echinodorus radicans. Gunung Djati Conference Series, 6, 8. https://conference.uinsgd.ac.id/index.php/

Fatimah, S., Kencana, S. P., ’Aarifah, S., & Eskani, I. N. (2023). Effect of ZnO Addition on The Characteristics of Cotton Fabric in The Batik Fabric Dyeing Process. Eksergi, 20(3), 210. https://doi.org/10.31315/e.v20i3.9895

Fiqih Virdiansyah, W., & Nurkhamidah, S. (2024). Penyisihan Metilen Biru Menggunakan Membran Komposit Polisulfon/Zeolit Removal of Methylene Blue using Polysulfone/Zeolite Composite Membrane. Eksergi, 21(3), 2460–8203.

Fouda, A., Eid, A. M., Abdelkareem, A., Said, H. A., El-Belely, E. F., Alkhalifah, D. H. M., Alshallash, K. S., & Hassan, S. E. D. (2022). Phyco-Synthesized Zinc Oxide Nanoparticles Using Marine Macroalgae, Ulva fasciata Delile, Characterization, Antibacterial Activity, Photocatalysis, and Tanning Wastewater Treatment. Catalysts, 12(7). https://doi.org/10.3390/catal12070756

Gao, K. (2021). Approaches and involved principles to control pH/pCO2 stability in algal cultures. Journal of Applied Phycology, 33(6), 3497–3505. https://doi.org/10.1007/s10811-021-02585-y

Hamidah, N., Elystia, S., & Sasmita, A. (2023). Analisis Penambahan Mikroorganisme Lokal (Mol) Terhadap Produktivitas Biomassa Dan Pengolahan Limbah Cair Tahu Menggunakan Rotary Algae Biofilm Reactor (Rabr). Jurnal Teknologi Pertanian Andalas, 27(2), 173–184.

Indrayani, L. (2018). Pengolahan Limbah Cair Industri Batik Sebagai Salah Satu Percontohan IPAL Batik di Yogyakarta. ECOTROPHIC : Jurnal Ilmu Lingkungan (Journal of Environmental Science), 12(2), 173. https://doi.org/10.24843/EJES.2018.v12.i02.p07

Islamawati, D., Darundiati, Y.H., & Dewanti, N. A. (2018). Studi Penurunan Kadar COD (Chemical Oxygen Demand) Menggunakan Ferri Klorida (FeCl3) Pada Limbah Cair Tapioka di Desa Ngemplak Margoyoso Pati. Environmental Science. https://doi.org/https://doi.org/10.14710/jkm.v6i6.22158

Jannah, I. N., & Muhimmatin, I. (2019). Pengelolaan Limbah Cair Industri Batik menggunakan Mikroorganisme di Kecamatan Cluring Kabupaten Banyuwangi. Warta Pengabdian, 13(3). https://doi.org/10.19184/wrtp.v13i3.12262

Jannah, M., Elystia, S., & Sasmita, A. (2023). Pengolahan Limbah Cair Tahu dengan Teknologi Rotary Algae Biofilm Reactor (RABR) Menggunakan Simbiosis Alga Bakteri dengan Variasi Kecepatan Putaran Disk. Jurnal Reka Lingkungan, 11(1), 59–70. https://doi.org/10.26760/rekalingkungan.v11i1.59-70

Mardhatillah, A., Elystia, S., & Sasmita, A. (2021). Pengaruh Kedalaman Terendam Disk Pada Proses Rotary Alga Biofilm Reactor Menggunakan Mikroalga Chlorella sp. Untuk Penyisihan COD, TSS Limbah Cair Domestik. Jurnal Online Mahasiswa Fakultas Teknik Universitas Riau, 8(2).

Mhatre-Naik, A., Pillai, G., Savvashe, P., Navale, M., Palkar, J., Lali, A. M., & Pandit, R. (2021). Developing efficient nutrient removal and resource recovery strategy towards synergistic MLW treatment using macroalgae in a flat panel photobioreactor. Sustainable Energy Technologies and Assessments, 47, 101475. https://doi.org/10.1016/j.seta.2021.101475

Munira, M., Aladin, A., Aulia Hamza, N., & Umrah Tulzhaliza, S. (2022). Pemanfaatan Limbah Biji Pepaya sebagai Biosorben terhadap Penurunan Total Ion Besi (Fe) dalam Air Limbah. Eksergi, 19(3), 123–128.

Mustofa, N., & Febriyana, L. (2024). Analisis Kadar Chemical Oxygen Demand (Cod) pada Air Limbah Domestik dengan Metode Refluks menggunakan Spektrofotometer Uv-Vis. JRSKT - Jurnal Riset Sains Dan Kimia Terapan, 10(1), 139–146. https://doi.org/10.21009/JRSKT.101.06

Novak, I., Magnusson, M., Craggs, R. J., & Lawton, R. J. (2024). Productivity and competitive dominance of freshwater filamentous macroalgal cultivars for nutrient bioremediation of primary municipal wastewater. Water Science and Technology, 90(7), 2158–2173. https://doi.org/10.2166/wst.2024.313

Nurrahmadhani, M., Elystia, S., Muria, R., Program, M., Lingkungan, S. T., Dosen, ), Lingkungan, T., & Kimia, T. (2020). Pengaruh Kecepatan Putaran Pada Proses Rotary Alga Biofilm Reactor (RABR) Untuk Penyisihan COD Menggunakan Mikroalga Chlorella sp. Pada Limbah Cair Domestik. In Jurnal Online Mahasiswa (JOM) FT.

O. Melfazen, M. K. Rozikin, N. L. Sakinah, and S. D. F. (2022). Pengolahan Limbah Cair Batik Menggunakan Metode Presipitasi Dan Filtrasi Untuk Umkm Batik. Jurnal Pembelajaran Pemberdayaan Masyarakat, 4(4), 333–338.

Ramadhani, A., & Purnama, V. (2023). Analisis Kadar BOD (Biological Oxygen Demand) dan COD (Chemical Oxygen Demand) Pada Air Sungai Batang Masumai Kabupaten Merangin di UPTD Laboratorium Dinas Lingkungan Hidup Kabupaten Merangin. Indonesian Journal of Chemical Research, 36–43. https://doi.org/10.20885/ijcr.vol7.iss2.art5

Ramadhani, R. A., Riyadi, D. H. S., Triwibowo, B., & Kusumaningtyas, R. D. (2017). Review Pemanfaatan Design Expert untuk Optimasi Komposisi Campuran Minyak Nabati sebagai Bahan Baku Sintesis Biodiesel. Jurnal Teknik Kimia Dan Lingkungan, 1(1), 11–16. https://doi.org/10.33795/jtkl.v1i1.5

Siswandari, A. M., Hindun Iin, & Sukarsono. (2016). Fitoremediasi Phospat Limbah Cair Laundry Menggunakan Tanaman Melati Air (Echinodorus paleafolius) dan Bambu Air (Equisetum hyemale) Sebagai Sumber Belajar Biologi. Pendidikan Biologi Indonesia, 2(3), 222–230.

Siswanti, S., Oktafiana, A. H., & Putri, Y. (2023). Adsorpsi Zat Warna Remazol Brilliant Blue R Pada Limbah Industri Batik Menggunakan Adsorben dari Mahkota Buah Nanas. Eksergi, 21(1), 9. https://doi.org/10.31315/e.v21i1.10669

Sode, S., Bruhn, A., Balsby, T. J. S., Larsen, M. M., Gotfredsen, A., & Rasmussen, M. B. (2013). Bioremediation of reject water from anaerobically digested waste water sludge with macroalgae ( Ulva lactuca , Chlorophyta). Bioresource Technology, 146, 426–435. https://doi.org/10.1016/j.biortech.2013.06.062

Stefany, C. (2023). Pemanfaatan Activated Carbon dalam Meningkatkan Fungsi Koagulan untuk Pengolahan POME (Palm Oil Mill Effluent). Journal of Environmental Management and Technology, 2(2), 64–74. https://doi.org/10.31258/jptl.2.2.64-74

Subekti, P., Hafiar, H., & Komariah, K. (2020). Word of mouth sebagai upaya promosi batik Sumedang oleh perajin batik (Studi Kasus pada Sanggar Batik Umimay). Dinamika Kerajinan Dan Batik: Majalah Ilmiah, 37(1), 41–54. https://doi.org/10.22322/dkb.V36i1.4149

Suherman, S. D. M., Firdaus, M. A., Ryansyah, M. H. D., & Sari, D. A. (2020). Teknologi dan Metode Pengolahan Limbah Cair Sebagai Pencegahan Pencemaran Lingkungan. Barometer, 5(1), 232–238. https://doi.org/10.35261/barometer.v5i1.3809

Susilo, F. A. P., Suharto, B., & Susanawati, L. D. (2016). Pengaruh Variasi Waktu Tinggal Terhadap Kadar BOD dan COD Limbah Tapioka dengan Metode Rotating Biological Contactor. Jurnal Sumber Daya Alam Dan Lingkungan, 21–26.

Waqas, S., Bilad, M. R., & Man, Z. B. (2021). Performance and Energy Consumption Evaluation of Rotating Biological Contactor for Domestic Wastewater Treatment. Indonesian Journal of Science and Technology, 6(1), 101–112. https://doi.org/10.17509/ijost.v6i1.31524

Ye, T., Li, M., Lin, Y., Wei, B., & Su, Z. (2024). Enhanced nitrogen and phosphorus removal from mariculture water using immobilized bacteria and macroalgae. Journal of Environmental Management, 370, 123004. https://doi.org/10.1016/j.jenvman.2024.123004

Downloads

Published

2025-08-04

How to Cite

Raharjo, S. H., Palupi, B., Syaifullah, R. Y., Yohanes, Sekaringgalih, R., & Hidayati, N. (2025). Optimization of Rotation Speed, Disc Diameter, and Lighting Time in Batik Waste Treatment Using Rotary Algae Biofilm Reactor (RABR) with Ulva sp. Eksergi, 22(3), 175–185. https://doi.org/10.31315/eksergi.v22i3.15084

Issue

Section

Artikel