Effect of Stearic Acid on Barrier and Mechanical Properties of Edible Films Based on Carboxymethyl Cellulose (CMC), Konjac Glucomannan (KGM), and κ-Carrageenan (κCarr)

Authors

  • Lintang Dian Widyasti Department of Chemical Engineering, Faculty of Industrial and System Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia
  • Wahyu Meka Department of Chemical Engineering, Faculty of Industrial and System Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia
  • Siti Nurkhamidah Department of Chemical Engineering, Faculty of Industrial and System Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia

DOI:

https://doi.org/10.31315/eksergi.v22i3.15127

Abstract

The development of edible films using natural polysaccharides presents a sustainable alternative to synthetic packaging materials. This study aimed to enhance the barrier properties of edible films composed of carboxymethyl cellulose (CMC), konjac glucomannan (KGM), and κ-carrageenan (κCarr) by incorporating stearic acid (SA). Films were prepared by blending the biopolymers with SA at varying concentrations (0.1–0.5% w/w) and characterized for their structural, physical, and mechanical properties. Fourier-transform infrared (FTIR) spectroscopy confirmed molecular interactions between SA and the polysaccharide matrix, evidenced by reduced O–H absorption bands and intensified –CH₂– peaks. SA incorporation increased film thickness and moisture content but reduced tensile strength, elongation at break, solubility, and water vapor permeability (WVP). Although the WVP of SA-modified films did not meet the Japanese Industrial Standard at the tested concentrations, the observed trend suggests that higher SA levels could further improve barrier performance. The optimal formulation (0.5% SA) demonstrated enhanced hydrophobicity, acceptable water activity, and moderate tensile strength and opacity. These findings indicate that stearic acid can effectively modify the functional properties of polysaccharide-based edible films, advancing their potential as eco-friendly food packaging materials. Further optimization of SA concentration is recommended to achieve industrial moisture barrier standards.

References

Larasati, W. A., Rahmawati, Y., Taufany, F., Susianto, S., Altway, A., & Nurkhamidah, S. (2024). Pengaruh Gliserol sebagai Plasticizer terhadap Karakterisasi Edible Film dari Kappa Karaginan. Eksergi, 21(3), 173–180. https://doi.org/10.31315/e.v21i3.12451

Anker, M., Berntsen, J., Hermansson, A.-M., & Stading, M. (2002). Improved water vapor barrier of whey protein films by addition of an acetylated monoglyceride. Innovative Food Science & Emerging Technologies, 3(1), 81–92. https://doi.org/10.1016/S1466-8564(01)00051-0

ASTM D882 TENSILE AND ELONGATION. (2018)

Bangar, S. P., Whiteside, W. S., Chowdhury, A., Ilyas, R. A., & Siroha, A. K. (2024). Recent advancements in functionality, properties, and applications of starch modification with stearic acid: A review. International Journal of Biological Macromolecules 280. https://doi.org/10.1016/j.ijbiomac.2024.135782

Basha, R. K., Konno, K., Kani, H., & Kimura, T. (2011). Water Vapor Transmission Rate of Biomass Based Film Materials. Engineering in Agriculture, Environment and Food, 4(2), 37–42. https://doi.org/10.1016/S1881-8366(11)80018-2

Bhatia, S., Abbas Shah, Y., Al-Harrasi, A., Jawad, M., Koca, E., & Aydemir, L. Y. (2024). Enhancing Tensile Strength, Thermal Stability, and Antioxidant Characteristics of Transparent Kappa Carrageenan Films Using Grapefruit Essential Oil for Food Packaging Applications. ACS Omega, 9(8), 9003–9012. https://doi.org/10.1021/acsomega.3c07366

Cahyarani Heksa, A., Rahmawati, Y., & Nurkhamidah, S. (2024). Physicochemical Properties of Crude and Purified of Glucomannan Flours. The Journal of Engineering, 10, (2)

Haleem, N., Arshad, M., Shahid, M., & Tahir, M. A. (2014). Synthesis of carboxymethyl cellulose from waste of cotton ginning industry. Carbohydrate Polymers, 113, 249–255. https://doi.org/10.1016/j.carbpol.2014.07.023

Indriyati, Frecilla, N., Nuryadin, B. W., Irmawati, Y., & Srikandace, Y. (2020). Enhanced Hydrophobicity and Elasticity of Bacterial Cellulose Films by Addition of Beeswax. Macromolecular Symposia, 391(1). https://doi.org/10.1002/masy.201900174

Istiani, A., Wardani, N. A., Kafiya, M., Hanifah, N. A., & Nukhia, Z. (2023). Karakterisasi Edible Film dari Pektin Kulit Durian, Pati Singkong, dan Gliserol. Eksergi, 21(1), 17. https://doi.org/10.31315/e.v21i1.10949

Japanese Industrial Standard (JIS). (1975). Japanese Standards Association: General rules of plastic films for food packaging: Vol. JIS Z 1707 2019 (E).

Jaya, D. (2014). Pembuatan Edible Film dari Tepung Jagung. Eksergi, 10(2), 5. https://doi.org/10.31315/e.v10i2.333

Jayarathna, S., Andersson, M., & Andersson, R. (2022). Recent Advances in Starch-Based Blends and Composites for Bioplastics Applications. Polymers, 14(21), 4557. https://doi.org/10.3390/polym14214557

Liu, X., Xu, F., Huang, X., Sun, J., Kan, J., & Liu, J. (2025). Preparation of Hydrophobic Purple Sweet Potato-Based Intelligent Packaging Films by Stearic Acid Coating and Heat Pressing Treatments. Foods, 14(7), 1276. https://doi.org/10.3390/foods14071276

Maulidia, R. R., Nurkhamidah, S., Taufany, F., Rahmawati, Y., Fahmi, & Meka, W. (2024). Synthesis of Refined Carrageenan from Eucheuma cottonii with Variation of Precipitating Solvent. ASEAN Engineering Journal, 14(3), 143–147. https://doi.org/10.11113/aej.V14.21328

Nandiyanto, A. B. D., Oktiani, R., & Ragadhita, R. (2019). How to read and interpret ftir spectroscope of organic material. Indonesian Journal of Science and Technology, 4(1), 97–118. https://doi.org/10.17509/ijost.v4i1.15806

Nzama, N. L., Dufresne, A., & Amonsou, E. O. (2024). Stearic acid enhanced starch nanocrystal integration in cassava starch film. International Journal of Food Science and Technology, 59(8), 5721–5732. https://doi.org/10.1111/ijfs.17310

Oyeyinka, S. A., Singh, S., & Amonsou, E. O. (2017). Physicochemical and Mechanical Properties of Bambara Groundnut Starch Films Modified with Stearic Acid. Journal of Food Science, 82(1), 118–123. https://doi.org/10.1111/1750-3841.13559

Praseptiangga, D., Afrida, B., Mufida, N., & Widyaastuti, D. (2023). Effects of Stearic Acid and Zein Incorporation on Refined Kappa Carrageenan-Based Composite Edible Film Properties. Journal of Current Science and Technology, 13(3), 762–773. https://doi.org/10.59796/jcst.V13N3.2023.1324

Radev, R., & Pashova, S. (2019). Water Activity (Aw) Of Starch Edible Films. Поширення і Тиражування Без Офіційного Дозволу Львівськоʀ Комерційноʀ Академіʀ Заборонено, 33-35.

Ren, M., Wang, N., Lu, Y., & Wang, C. (2025). Preparation and Characterization of Antioxidative and pH-Sensitive Films Based on κ-Carrageenan/Carboxymethyl Cellulose Blended with Purple Cabbage Anthocyanin for Monitoring Hairtail Freshness. Foods, 14(4), 694. https://doi.org/10.3390/foods14040694

Schmidt, V. C. R., Porto, L. M., Laurindo, J. B., & Menegalli, F. C. (2013). Water vapor barrier and mechanical properties of starch films containing stearic acid. Industrial Crops and Products, 41(1), 227–234. https://doi.org/10.1016/j.indcrop.2012.04.038

Thakur, R., Pristijono, P., Golding, J. B., Stathopoulos, C. E., Scarlett, C. J., Bowyer, M., Singh, S. P., & Vuong, Q. V. (2017). Amylose-lipid complex as a measure of variations in physical, mechanical and barrier attributes of rice starch- ι -carrageenan biodegradable edible film. Food Packaging and Shelf Life, 14, 108–115. https://doi.org/10.1016/j.fpsl.2017.10.002

Thakur, R., Pristijono, P., Scarlett, C. J., Bowyer, M., Singh, S. P., & Vuong, Q. V. (2019). Starch-based films: Major factors affecting their properties. International Journal of Biological Macromolecules, 132, 1079–1089. https://doi.org/10.1016/j.ijbiomac.2019.03.190

Thakur, R., Saberi, B., Pristijono, P., Golding, J., Stathopoulos, C., Scarlett, C., Bowyer, M., & Vuong, Q. (2016). Characterization of rice starch-ι-carrageenan biodegradable edible film. Effect of stearic acid on the film properties. International Journal of Biological Macromolecules, 93, 952–960. https://doi.org/10.1016/j.ijbiomac.2016.09.053

Tran, T. T. B., Vu, B. N., Saifullah, M., Nguyen, M. H., Pristijono, P., Kirkman, T., & Vuong, Q. Van. (2021). Impact of Various Essential Oils and Plant Extracts on the Characterization of the Composite Seaweed Hydrocolloid and Gac Pulp (Momordica cochinchinensis) Edible Film. Processes, 9(11), 2038. https://doi.org/10.3390/pr9112038

Wei, X., Pang, J., Zhang, C., Yu, C., Chen, H., & Xie, B. (2015). Structure and properties of moisture-resistant konjac glucomannan films coated with shellac/stearic acid coating. Carbohydrate Polymers, 118, 119–125. https://doi.org/10.1016/j.carbpol.2014.11.009

Wu, C., Li, Y., Du, Y., Wang, L., Tong, C., Hu, Y., Pang, J., & Yan, Z. (2019). Preparation and characterization of konjac glucomannan-based bionanocomposite film for active food packaging. Food Hydrocolloids, 89, 682–690. https://doi.org/10.1016/j.foodhyd.2018.11.001

Yildirim-Yalcin, M., Tornuk, F., & Toker, O. S. (2022). Recent advances in the improvement of carboxymethyl cellulose-based edible films. Trends in Food Science & Technology, 129, 179–193. https://doi.org/10.1016/j.tifs.2022.09.022

Zhou, X., Zong, X., Wang, S., Yin, C., Gao, X., Xiong, G., Xu, X., Qi, J., & Mei, L. (2021). Emulsified blend film based on konjac glucomannan/carrageenan/ camellia oil: Physical, structural, and water barrier properties. Carbohydrate Polymers, 251, 117100. https://doi.org/10.1016/j.carbpol.2020.117100

Ziani, K., Oses, J., Coma, V., & Maté, J. I. (2008). Effect of the presence of glycerol and Tween 20 on the chemical and physical properties of films based on chitosan with different degree of deacetylation. LWT, 41(10), 2159–2165. https://doi.org/10.1016/j.lwt.2007.11.023

Downloads

Published

2025-08-01

How to Cite

Widyasti, L. D., Meka, W., & Nurkhamidah, S. (2025). Effect of Stearic Acid on Barrier and Mechanical Properties of Edible Films Based on Carboxymethyl Cellulose (CMC), Konjac Glucomannan (KGM), and κ-Carrageenan (κCarr) . Eksergi, 22(3), 150–157. https://doi.org/10.31315/eksergi.v22i3.15127

Issue

Section

Artikel