Adsorption of Rhodamine B by Coconut Shell Activated Carbon
DOI:
https://doi.org/10.31315/eksergi.v22i3.15698Keywords:
adsorption, adsorbent, coconut shell activated carbon, rhodamine B, adsorption isothermAbstract
Pollution caused by dye waste from the textile industry, specifically Rhodamine B, poses significant risks to human health. Furthermore, large-scale discharge of Rhodamine B into aquatic environments can alter water pH, thereby adversely affecting aquatic ecosystems. Environmental pollution caused by this dye can be prevented through adsorption using activated carbon. In this study aims to evaluate the efficiency of Rhodamine B dye removal from synthetic wastewater by varying the mass of activated carbon from coconut shell carbon and to determine the appropriate adsorption isotherm model based on the adsorption capacity of Rhodamine B on the adsorbent. The experiment was conducted by activating coconut shell carbon physically using a furnace at a temperature of 700℃ for 2 hours and chemically using 2.5 M KOH and soaked for 20 hours with a ratio of 1: 3 (m/v). The results of the study based on variations in adsorbent mass showed the best mass of 3 g with the smallest final concentration of 2.1717 ppm, an equilibrium time of 120 minutes, and an adsorption effectiveness of 86.13%. The appropriate adsorption isotherm model is the Langmuir isotherm.
References
Arena, N., Lee, J., & Clift, R. (2016). Life Cycle Assessment of activated carbon production from coconut shells. Journal of Cleaner Production, 125, 68–77. https://doi.org/10.1016/j.jclepro.2016.03.073
Bayu, A., Nandiyanto, D., Novia, D., Husaeni, A. L., Ragadhita, R., Fiandini, M., Fitria, D., & Maryanti, R. (2023). Analysis of adsorption isotherm characteristics for removing curcumin dyes from aqueous solutions using avocado seed waste carbon microparticles accompanied by computational calculations. In Journal of Engineering Science and Technology (Vol. 18, Issue 1).
Brazesh, B., Mousavi, S. M., Zarei, M., Ghaedi, M., Bahrani, S., & Hashemi, S. A. (2021). Chapter 9 - Biosorption. In M. Ghaedi (Ed.), Adsorption: Fundamental Processes and Applications (Vol. 33, pp. 587–628). Elsevier. https://doi.org/10.1016/B978-0-12-818805-7.00003-5
Chu, K. H., Hashim, M. A., Debord, J., Harel, M., Salvestrini, S., & Bollinger, J.-C. (2023). The Jovanović adsorption isotherm in water contaminant research: Unmasking spurious versions and spotlighting the real thing. Chemical Engineering Science, 281, 119127. https://doi.org/10.1016/j.ces.2023.119127
Duan, X. L., Yuan, C. G., Jing, T. T., & Yuan, X. D. (2019). Removal of elemental mercury using large surface area micro-porous corn cob activated carbon by zinc chloride activation. Fuel, 239, 830–840. https://doi.org/10.1016/j.fuel.2018.11.017
Dutta, P. (2022). Effects of textile dyeing effluent on the environment and its treatment: A review. Engineering and Applied Science Letters, 5(1), 1–17. https://doi.org/10.30538/psrp-easl2022.0080
Liang, Q., Liu, Y., Chen, M., Ma, L., Yang, B., Li, L., & Liu, Q. (2020). Optimized preparation of activated carbon from coconut shell and municipal sludge. Materials Chemistry and Physics, 241. https://doi.org/10.1016/j.matchemphys.2019.122327
Liu, P., Sun, S., Huang, S., Wu, Y., Li, X., Wei, X., & Wu, S. (2024). KOH activation mechanism in the preparation of brewer’s spent grain-based activated carbons. Catalysts, 14(11). https://doi.org/10.3390/catal14110814
Liu, Y., Chen, J., Duan, D., Zhang, Z., Liu, C., Cai, W., & Zhao, Z. (2024). Environmental impacts and biological technologies toward sustainable treatment of textile dyeing wastewater: A Review. Sustainability (Switzerland), 16(24). https://doi.org/10.3390/su162410867
Mercileen, O. L., Khan Patan, A., & Lakshmi, M. V. V. C. (2023). Selection of chemical activating agent for the synthesis of activated carbon from coconut shell for enhanced dye treatment - its kinetics and equilibrium study. Materials Today: Proceedings, 72, 274–285. https://doi.org/10.1016/j.matpr.2022.07.290
Lutfi, M., Hanafi, Susilo, B., Prasetyo, J., Sandra, & Prajogo, U. (2021). Characteristics of activated carbon from coconut shell (Cocos nucifera) through chemical activation process. IOP Conference Series: Earth and Environmental Science, 733(1). https://doi.org/10.1088/1755-1315/733/1/012134
Nandiyanto, A. B. D., Ragadhita, R., & Yunas, J. (2020). Adsorption isotherm of densed monoclinic tungsten trioxide nanoparticles. Sains Malaysiana, 49(12), 2881–2890. https://doi.org/10.17576/jsm-2020-4912-01
Nguyen, L. H., Van, H. T., Ngo, Q. N., Thai, V. N., Hoang, V. H., & Hai, N. T. T. (2021). Improving Fenton-like oxidation of Rhodamin B using a new catalyst based on magnetic/iron-containing waste slag composite. Environmental Technology and Innovation, 23. https://doi.org/10.1016/j.eti.2021.101582
Nonsawang, S., Juntahum, S., Sanchumpu, P., Suaili, W., Senawong, K., & Laloon, K. (2024). Unlocking renewable fuel: Charcoal briquettes production from agro-industrial waste with cassava industrial binders. Energy Reports, 12, 4966-4982. https://doi.org/10.1016/j.egyr.2024.10.053
Pourhakkak, P., Taghizadeh, A., Taghizadeh, M., Ghaedi, M., & Haghdoust, S. (2021). Chapter 1 - Fundamentals of adsorption technology. In M. Ghaedi (Ed.), Adsorption: Fundamental Processes and Applications (Vol. 33, pp. 1–70). Elsevier. https://doi.org/10.1016/B978-0-12-818805-7.00001-1
Rafique, M., Shafiq, F., Ali Gillani, S. S., Shakil, M., Tahir, M. B., & Sadaf, I. (2020). Eco-friendly green and biosynthesis of copper oxide nanoparticles using Citrofortunella microcarpa leaves extract for efficient photocatalytic degradation of Rhodamin B dye form textile wastewater. Optik, 208. https://doi.org/10.1016/j.ijleo.2019.164053
Saputra, A. M. A., Syakira, F. N., Luthfiyah, S. A., Azkia, S., Hasibuan, M. I., Marpongahtun, Andriayani, Goei, R., Sabar, S., & Gea, S. (2025). Graphene oxide–bacterial cellulose composites for enhanced adsorption of rhodamine B from aqueous solutions. Water Science and Engineering. https://doi.org/10.1016/j.wse.2025.07.001
Sari, M., Evalina, T. R., Sarah, N. A. (2024). Kadar Rhodamin B bumbu tabur balado di beberapa pasar di kota medan secara spektrofotometri UV-Vis. Jurnal Ilmiah Multidisiplin., 3(5).
Singh, R., & Bhateria, R. (2020). Experimental and modeling process optimization of lead adsorption on magnetite nanoparticles via isothermal, kinetics, and thermodynamic studies. ACS Omega, 5(19), 10826–10837. https://doi.org/10.1021/acsomega.0c00450
Siswanti, Putri, Y., & Hasna Oktaviana, A. (2024). Adsorpsi zat warna Remazol Brilliant Blue R pada limbah industri batik menggunakan adsorben dari mahkota buah nanas. In Jurnal Ilmiah Teknik Kimia (Vol. 21, Issue 1).
Syakir, N., Oktaviani, D., Fitrilawati (2023). Pengaruh waktu dan dosis terhadap efektivitas adsorpsi Rhodamine B oleh graphene oxide. In Jurnal Material dan Energi Indonesia Disubmit (Vol. 13, Issue 02).
Utami, B., & Purnamawati, H. (2014). Pemanfaatan limbah kulit buah kakao (Theobroma cocoa L.) sebagai adsorben zat warna Rhodamin B. Prosiding Seminar Nasional Fisika Dan Pendidikan Fisika, 5.
Walidah, R. I., & Takwanto, A. (2022). Pembuatan bio adsorben dari daun ketapang dengan aktivator asam sulfat secara mechanochemical untuk menurunkan kandungan Rhodamin B pada limbah tekstil. Jurna; Teknologi Separasi, 8(4), 704–711.
Wang, J., & Guo, X. (2020). Adsorption isotherm models: Classification, physical meaning, application and solving method. In Chemosphere (Vol. 258). Elsevier Ltd. https://doi.org/10.1016/j.chemosphere.2020.12727
Wante, H. P., Yap, S. L., Khan, A. A., Chowdhury, Z. Z., Nee, C. H., & Yap, S. S. (2024). Enhanced adsorption of malachite green (MG) dye using RF glow oxygen plasma-modified coconut carbon shell: A sustainable approach for effluent treatment. Diamond and Related Materials, 149, 111650. https://doi.org/10.1016/j.diamond.2024.111650
Yang, J., & Han, S. (2018). Kinetics and equilibrium study for the adsorption of lysine on activated carbon derived from coconut shell. Desalination and Water Treatment, 120, 261–271. https://doi.org/10.5004/dwt.2018.22747
Yastinah, Syamsudin, A. B., Kurniaty, I., Rahmawati, M., & Nisavira, P. (2022). Pengaruh massa adsorben arang aktif dari ampas kopi untuk menyerap zat warna Rhodamin B. Seminar Nasional Penelitian LPPM UMJ.
Ye, W., Pan, Y., He, L., Chen, B., Liu, J., Gao, J., Wang, Y., & Yang, Y. (2021). Chapter 3 - Design with modeling techniques. In H. D. Goodfellow & Y. Wang (Eds.), Industrial Ventilation Design Guidebook (Second Edition) (Second Edition, pp. 109–183). Academic Press. https://doi.org/10.1016/B978-0-12-816673-4.00008-0
Yu, J., Bian, Y., Wang, R., Zhou, S., Wang, Z., Wang, D., & Li, H. (2024). Coconut shell carbon preparation for Rhodamine B adsorption and mechanism study. Molecules, 29(17). https://doi.org/10.3390/molecules29174262
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Siswanti Siswanti, Rexyvo Yurist Kusuma Dopinsa, Dwi Anggraita

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License(CC BY SA 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Eksergi allows authors retain the copyright and full publishing rights without restrictions.



