Adsorption of Rhodamine B by Coconut Shell Activated Carbon

Authors

  • Siswanti Siswanti Chemical Engineering Department, Faculty of Industrial Engineering, UPN "Veteran" Yogyakarta, Jl. Padjadjaran 104 (Lingkar Utara) Condongcatur, Yogyakarta, 55283, Indonesia
  • Rexyvo Yurist Kusuma Dopinsa Chemical Engineering Department, Faculty of Industrial Engineering, UPN "Veteran" Yogyakarta, Jl. Padjadjaran 104 (Lingkar Utara) Condongcatur, Yogyakarta, 55283, Indonesia
  • Dwi Anggraita Chemical Engineering Department, Faculty of Industrial Engineering, UPN "Veteran" Yogyakarta, Jl. Padjadjaran 104 (Lingkar Utara) Condongcatur, Yogyakarta, 55283, Indonesia

DOI:

https://doi.org/10.31315/eksergi.v22i3.15698

Keywords:

adsorption, adsorbent, coconut shell activated carbon, rhodamine B, adsorption isotherm

Abstract

Pollution caused by dye waste from the textile industry, specifically Rhodamine B, poses significant risks to human health. Furthermore, large-scale discharge of Rhodamine B into aquatic environments can alter water pH, thereby adversely affecting aquatic ecosystems. Environmental pollution caused by this dye can be prevented through adsorption using activated carbon. In this study aims to evaluate the efficiency of Rhodamine B dye removal from synthetic wastewater by varying the mass of activated carbon from coconut shell carbon and to determine the appropriate adsorption isotherm model based on the adsorption capacity of Rhodamine B on the adsorbent. The experiment was conducted by activating coconut shell carbon physically using a furnace at a temperature of 700℃ for 2 hours and chemically using 2.5 M KOH and soaked for 20 hours with a ratio of 1: 3 (m/v). The results of the study based on variations in adsorbent mass showed the best mass of 3 g with the smallest final concentration of 2.1717 ppm, an equilibrium time of 120 minutes, and an adsorption effectiveness of 86.13%. The appropriate adsorption isotherm model is the Langmuir isotherm.

References

Arena, N., Lee, J., & Clift, R. (2016). Life Cycle Assessment of activated carbon production from coconut shells. Journal of Cleaner Production, 125, 68–77. https://doi.org/10.1016/j.jclepro.2016.03.073

Bayu, A., Nandiyanto, D., Novia, D., Husaeni, A. L., Ragadhita, R., Fiandini, M., Fitria, D., & Maryanti, R. (2023). Analysis of adsorption isotherm characteristics for removing curcumin dyes from aqueous solutions using avocado seed waste carbon microparticles accompanied by computational calculations. In Journal of Engineering Science and Technology (Vol. 18, Issue 1).

Brazesh, B., Mousavi, S. M., Zarei, M., Ghaedi, M., Bahrani, S., & Hashemi, S. A. (2021). Chapter 9 - Biosorption. In M. Ghaedi (Ed.), Adsorption: Fundamental Processes and Applications (Vol. 33, pp. 587–628). Elsevier. https://doi.org/10.1016/B978-0-12-818805-7.00003-5

Chu, K. H., Hashim, M. A., Debord, J., Harel, M., Salvestrini, S., & Bollinger, J.-C. (2023). The Jovanović adsorption isotherm in water contaminant research: Unmasking spurious versions and spotlighting the real thing. Chemical Engineering Science, 281, 119127. https://doi.org/10.1016/j.ces.2023.119127

Duan, X. L., Yuan, C. G., Jing, T. T., & Yuan, X. D. (2019). Removal of elemental mercury using large surface area micro-porous corn cob activated carbon by zinc chloride activation. Fuel, 239, 830–840. https://doi.org/10.1016/j.fuel.2018.11.017

Dutta, P. (2022). Effects of textile dyeing effluent on the environment and its treatment: A review. Engineering and Applied Science Letters, 5(1), 1–17. https://doi.org/10.30538/psrp-easl2022.0080

Liang, Q., Liu, Y., Chen, M., Ma, L., Yang, B., Li, L., & Liu, Q. (2020). Optimized preparation of activated carbon from coconut shell and municipal sludge. Materials Chemistry and Physics, 241. https://doi.org/10.1016/j.matchemphys.2019.122327

Liu, P., Sun, S., Huang, S., Wu, Y., Li, X., Wei, X., & Wu, S. (2024). KOH activation mechanism in the preparation of brewer’s spent grain-based activated carbons. Catalysts, 14(11). https://doi.org/10.3390/catal14110814

Liu, Y., Chen, J., Duan, D., Zhang, Z., Liu, C., Cai, W., & Zhao, Z. (2024). Environmental impacts and biological technologies toward sustainable treatment of textile dyeing wastewater: A Review. Sustainability (Switzerland), 16(24). https://doi.org/10.3390/su162410867

Mercileen, O. L., Khan Patan, A., & Lakshmi, M. V. V. C. (2023). Selection of chemical activating agent for the synthesis of activated carbon from coconut shell for enhanced dye treatment - its kinetics and equilibrium study. Materials Today: Proceedings, 72, 274–285. https://doi.org/10.1016/j.matpr.2022.07.290

Lutfi, M., Hanafi, Susilo, B., Prasetyo, J., Sandra, & Prajogo, U. (2021). Characteristics of activated carbon from coconut shell (Cocos nucifera) through chemical activation process. IOP Conference Series: Earth and Environmental Science, 733(1). https://doi.org/10.1088/1755-1315/733/1/012134

Nandiyanto, A. B. D., Ragadhita, R., & Yunas, J. (2020). Adsorption isotherm of densed monoclinic tungsten trioxide nanoparticles. Sains Malaysiana, 49(12), 2881–2890. https://doi.org/10.17576/jsm-2020-4912-01

Nguyen, L. H., Van, H. T., Ngo, Q. N., Thai, V. N., Hoang, V. H., & Hai, N. T. T. (2021). Improving Fenton-like oxidation of Rhodamin B using a new catalyst based on magnetic/iron-containing waste slag composite. Environmental Technology and Innovation, 23. https://doi.org/10.1016/j.eti.2021.101582

Nonsawang, S., Juntahum, S., Sanchumpu, P., Suaili, W., Senawong, K., & Laloon, K. (2024). Unlocking renewable fuel: Charcoal briquettes production from agro-industrial waste with cassava industrial binders. Energy Reports, 12, 4966-4982. https://doi.org/10.1016/j.egyr.2024.10.053

Pourhakkak, P., Taghizadeh, A., Taghizadeh, M., Ghaedi, M., & Haghdoust, S. (2021). Chapter 1 - Fundamentals of adsorption technology. In M. Ghaedi (Ed.), Adsorption: Fundamental Processes and Applications (Vol. 33, pp. 1–70). Elsevier. https://doi.org/10.1016/B978-0-12-818805-7.00001-1

Rafique, M., Shafiq, F., Ali Gillani, S. S., Shakil, M., Tahir, M. B., & Sadaf, I. (2020). Eco-friendly green and biosynthesis of copper oxide nanoparticles using Citrofortunella microcarpa leaves extract for efficient photocatalytic degradation of Rhodamin B dye form textile wastewater. Optik, 208. https://doi.org/10.1016/j.ijleo.2019.164053

Saputra, A. M. A., Syakira, F. N., Luthfiyah, S. A., Azkia, S., Hasibuan, M. I., Marpongahtun, Andriayani, Goei, R., Sabar, S., & Gea, S. (2025). Graphene oxide–bacterial cellulose composites for enhanced adsorption of rhodamine B from aqueous solutions. Water Science and Engineering. https://doi.org/10.1016/j.wse.2025.07.001

Sari, M., Evalina, T. R., Sarah, N. A. (2024). Kadar Rhodamin B bumbu tabur balado di beberapa pasar di kota medan secara spektrofotometri UV-Vis. Jurnal Ilmiah Multidisiplin., 3(5).

Singh, R., & Bhateria, R. (2020). Experimental and modeling process optimization of lead adsorption on magnetite nanoparticles via isothermal, kinetics, and thermodynamic studies. ACS Omega, 5(19), 10826–10837. https://doi.org/10.1021/acsomega.0c00450

Siswanti, Putri, Y., & Hasna Oktaviana, A. (2024). Adsorpsi zat warna Remazol Brilliant Blue R pada limbah industri batik menggunakan adsorben dari mahkota buah nanas. In Jurnal Ilmiah Teknik Kimia (Vol. 21, Issue 1).

Syakir, N., Oktaviani, D., Fitrilawati (2023). Pengaruh waktu dan dosis terhadap efektivitas adsorpsi Rhodamine B oleh graphene oxide. In Jurnal Material dan Energi Indonesia Disubmit (Vol. 13, Issue 02).

Utami, B., & Purnamawati, H. (2014). Pemanfaatan limbah kulit buah kakao (Theobroma cocoa L.) sebagai adsorben zat warna Rhodamin B. Prosiding Seminar Nasional Fisika Dan Pendidikan Fisika, 5.

Walidah, R. I., & Takwanto, A. (2022). Pembuatan bio adsorben dari daun ketapang dengan aktivator asam sulfat secara mechanochemical untuk menurunkan kandungan Rhodamin B pada limbah tekstil. Jurna; Teknologi Separasi, 8(4), 704–711.

Wang, J., & Guo, X. (2020). Adsorption isotherm models: Classification, physical meaning, application and solving method. In Chemosphere (Vol. 258). Elsevier Ltd. https://doi.org/10.1016/j.chemosphere.2020.12727

Wante, H. P., Yap, S. L., Khan, A. A., Chowdhury, Z. Z., Nee, C. H., & Yap, S. S. (2024). Enhanced adsorption of malachite green (MG) dye using RF glow oxygen plasma-modified coconut carbon shell: A sustainable approach for effluent treatment. Diamond and Related Materials, 149, 111650. https://doi.org/10.1016/j.diamond.2024.111650

Yang, J., & Han, S. (2018). Kinetics and equilibrium study for the adsorption of lysine on activated carbon derived from coconut shell. Desalination and Water Treatment, 120, 261–271. https://doi.org/10.5004/dwt.2018.22747

Yastinah, Syamsudin, A. B., Kurniaty, I., Rahmawati, M., & Nisavira, P. (2022). Pengaruh massa adsorben arang aktif dari ampas kopi untuk menyerap zat warna Rhodamin B. Seminar Nasional Penelitian LPPM UMJ.

Ye, W., Pan, Y., He, L., Chen, B., Liu, J., Gao, J., Wang, Y., & Yang, Y. (2021). Chapter 3 - Design with modeling techniques. In H. D. Goodfellow & Y. Wang (Eds.), Industrial Ventilation Design Guidebook (Second Edition) (Second Edition, pp. 109–183). Academic Press. https://doi.org/10.1016/B978-0-12-816673-4.00008-0

Yu, J., Bian, Y., Wang, R., Zhou, S., Wang, Z., Wang, D., & Li, H. (2024). Coconut shell carbon preparation for Rhodamine B adsorption and mechanism study. Molecules, 29(17). https://doi.org/10.3390/molecules29174262

Downloads

Published

2025-11-18

How to Cite

Siswanti, S., Dopinsa, R. Y. K., & Anggraita, D. (2025). Adsorption of Rhodamine B by Coconut Shell Activated Carbon. Eksergi, 22(3), 192–200. https://doi.org/10.31315/eksergi.v22i3.15698

Issue

Section

Artikel