Mechanistic Modeling of a Spiral-Wound Nanofiltration Module using DSPM-DE for High-Purity Salt Recovery from Desalination Brine

Authors

  • Mohamad Sugianto Department of Chemical Engineering, Faculty of Industrial Technology and Systems Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, East Jawa, 60111, Indonesia
  • Ali Altway Department of Chemical Engineering, Faculty of Industrial Technology and Systems Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, East Jawa, 60111, Indonesia
  • Susianto Department of Chemical Engineering, Faculty of Industrial Technology and Systems Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, East Jawa, 60111, Indonesia

DOI:

https://doi.org/10.31315/eksergi.v23i1.15947

Keywords:

nanofiltration, rejected brine, DSPM-DE, divalent ion, high purity salt

Abstract

Rejected brine is a concentrated NaCl stream whose elevated Ca²⁺, Mg²⁺, and SO₄²⁻ depress the quality of industrial salt. We built a mechanistic model of a spiral-wound KeenSen NF1-4040F nanofiltration (NF) element using the Donnan–Steric Pore Model with Dielectric Exclusion coupled to the Extended Nernst–Planck equations. Radial transport is coupled to axial mass balances and solved at steady, isothermal conditions over  bar and . Water flux  increases almost linearly with ; along the module  falls and  rises nearly linearly. Recovery increases with  but decreases with . Flux decomposition shows cations are convection-dominated, whereas anions carry larger shares of diffusion and electromigration. Predicted end-of-module rejections are ≈ 99.0-99.3%, ≈ 97.6-98.1%, ≈ 96.0-96.6%, ≈ 88-89%, and ≈ 74-75%, confirming divalent ≫ monovalent selectivity. Linking to product quality, the simulated permeate at  bar and  yields a conservative dry-salt purity of ~96.9 wt% NaCl when all non-halite salts co-precipitate. Under halite-first crystallization with a gypsum pre-step and bittern purge, only a minor fraction co-crystallizes, giving ≥98.5 wt% (≈99.5 wt% for a 20% co-crystallization assumption). Thus, operating at moderate-to-high  with moderate cross-flow not only maximizes recovery and divalent rejection but also supplies a permeate that can be crystallized to SNI-compliant high-purity salt.

Author Biographies

Mohamad Sugianto, Department of Chemical Engineering, Faculty of Industrial Technology and Systems Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, East Jawa, 60111, Indonesia

Department of Chemical Engineering, Faculty of Industrial Technology and Systems Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, East Jawa, 60111, Indonesia

Ali Altway, Department of Chemical Engineering, Faculty of Industrial Technology and Systems Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, East Jawa, 60111, Indonesia

Department of Chemical Engineering, Faculty of Industrial Technology and Systems Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, East Jawa, 60111, Indonesia

Susianto, Department of Chemical Engineering, Faculty of Industrial Technology and Systems Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, East Jawa, 60111, Indonesia

Department of Chemical Engineering, Faculty of Industrial Technology and Systems Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, East Jawa, 60111, Indonesia

References

Agboola, O., Maree, J., Kolesnikov, A., Mbaya, R., & Sadiku, R. (2015). Theoretical Performance of Nanofiltration Membranes for Wastewater Treatment. In Environmental Chemistry Letters (Vol. 13, Issue 1, pp. 37–47). Springer Verlag. https://doi.org/10.1007/s10311-014-0486-y

Ali, M. E. A. (2021). Nanofiltration Process for Enhanced Treatment of RO Brine Discharge. Membranes, 11(3), 1–6. https://doi.org/10.3390/membranes11030212

Avramidi, M., Loizou, C., Kyriazi, M., Malamis, D., Kalli, K., Hadjicharalambous, A., & Kollia, C. (2025). Optimization of the Quality of Reclaimed Water from Urban Wastewater Treatment in Arid Region: A Zero Liquid Discharge Pilot Study Using Membrane and Thermal Technologies. Membranes, 15(7). https://doi.org/10.3390/membranes15070199

Bandini, S., & Vezzani, D. (2003). Nanofiltration Modeling: The Role of Dielectric Exclusion in Membrane Characterization. Chemical Engineering Science, 58(15), 3303–3326. https://doi.org/10.1016/S0009-2509(03)00212-4

Bargeman, G., Guerra Miguez, O., Westerink, J. B., & ten Kate, A. (2023). Chloride retention model for concentrated solutions containing sodium chloride and sodium sulfate based on thermodynamic considerations. Desalination, 555. https://doi.org/10.1016/j.desal.2023.116562

Bowen, W. R., & Welfoot, J. S. (2002). Modelling the performance of membrane nanoÿltration-critical assessment and model development. In Chemical Engineering Science (Vol. 57). www.elsevier.com/locate/ces

Cabrera, S. M., Winnubst, L., Richter, H., Voigt, I., McCutcheon, J., & Nijmeijer, A. (2022). Performance evaluation of an industrial ceramic nanofiltration unit for wastewater treatment in oil production. Water Research, 220. https://doi.org/10.1016/j.watres.2022.118593

Cevallos-Cueva, N., Rahman, M. M., Hailu Kinfu, H., & Abetz, V. (2024). Mass Transport Mechanism of Nitrate Selective Nanofiltration Membranes on The Basis of The Donnan Steric Pore Model With Dielectric Exclusion (DSPM-DE). Chemical Engineering Journal, 493. https://doi.org/10.1016/j.cej.2024.152775

Cevallos-Cueva, N., Rahman, M. M., Kinfu, H. H., & Abetz, V. (2025). Mass Transport Mechanisms Insights of Selective Sodium / Magnesium Separation Through Nanofiltration Membranes. Journal of Membrane Science, 721. https://doi.org/10.1016/j.memsci.2025.123808

EL Idrissi, Y., Benabbou, M., Rais, Z., & EL Haji, M. (2024). Brackish and seawater pretreatment processes: A systematic literature review. Desalination and Water Treatment, 318. https://doi.org/10.1016/j.dwt.2024.100350

Figueira, M., Rodríguez-Jiménez, D., López, J., Reig, M., Luis Cortina, J., & Valderrama, C. (2023). Evaluation of the nanofiltration of brines from seawater desalination plants as pre-treatment in a multimineral brine extraction process. Separation and Purification Technology, 322. https://doi.org/10.1016/j.seppur.2023.124232

Ghorbani, A., Bayati, B., Drioli, E., Macedonio, F., Kikhavani, T., & Frappa, M. (2021). Modeling of nanofiltration process using dspm-de model for purification of amine solution. Membranes, 11(4). https://doi.org/10.3390/membranes11040230

Giacobbo, A., Bernardes, A. M., Rosa, M. J. F., & De Pinho, M. N. (2018). Concentration polarization in ultrafiltration/nanofiltration for the recovery of polyphenols from winery wastewaters. Membranes, 8(3). https://doi.org/10.3390/membranes8030046

Hista Saputra, I., Mariyanti, T., & Athallah, M. R. (2022). Strategy For Development of Pharmaceutical Salt Business in Improving The Welfare of The Salt Farmers from Islamic Perspective. ADI Journal on Recent Innovation (AJRI), 4(1), 43–55. https://doi.org/10.34306/ajri.v4i1.750

Hubach, T., Schlüter, S., & Held, C. (2023). Model-Based Optimization of Multi-Stage Nanofiltration Using the Solution-Diffusion–Electromigration Model. Processes, 11(8). https://doi.org/10.3390/pr11082355

Izadpanah, A. A., & Javidnia, A. (2012). The ability of a nanofiltration membrane to remove hardness and ions from diluted seawater. Water (Switzerland), 4(2), 283–294. https://doi.org/10.3390/w4020283

Jones, E., Qadir, M., van Vliet, M. T. H., Smakhtin, V., & Kang, S. mu. (2019). The state of desalination and brine production: A global outlook. In Science of the Total Environment (Vol. 657, pp. 1343–1356). Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2018.12.076

Labban, O., Liu, C., Chong, T. H., & Lienhard V., J. H. (2017). Fundamentals of Low-Pressure Nanofiltration: Membrane Characterization, Modeling, and Understanding The Multi-Ionic Interactions in Water Softening. Journal of Membrane Science, 521, 18–32. https://doi.org/10.1016/j.memsci.2016.08.062

Lai, D. Q., Tagashira, N., Hagiwara, S., Nakajima, M., Kimura, T., & Nabetani, H. (2021). Influences of technological parameters on cross-flow nanofiltration of cranberry juice. Membranes, 11(5). https://doi.org/10.3390/membranes11050329

Lu, D., Yao, Z., Jiao, L., Waheed, M., Sun, Z., & Zhang, L. (2022). Separation mechanism, selectivity enhancement strategies and advanced materials for mono-/multivalent ion-selective nanofiltration membrane. In Advanced Membranes (Vol. 2). KeAi Communications Co. https://doi.org/10.1016/j.advmem.2022.100032

Ma, Z., Wang, M., Gao, X., & Gao, C. (2014). Charge and separation characteristics of nanofiltration membrane embracing dissociated functional groups. Frontiers of Environmental Science and Engineering, 8(5), 650–658. https://doi.org/10.1007/s11783-013-0605-1

Micari, M., Diamantidou, D., Heijman, B., Moser, M., Haidari, A., Spanjers, H., & Bertsch, V. (2020). Experimental and Theoretical Characterization of Commercial Nanofiltration Membranes for the Treatment of Ion Exchange Spent Brine.

Omerspahic, M., Al-Jabri, H., Siddiqui, S. A., & Saadaoui, I. (2022). Characteristics of Desalination Brine and Its Impacts on Marine Chemistry and Health, With Emphasis on the Persian/Arabian Gulf: A Review. In Frontiers in Marine Science (Vol. 9). Frontiers Media S.A. https://doi.org/10.3389/fmars.2022.845113

Popova, A., Rattanakom, R., Yu, Z. Q., Li, Z., Nakagawa, K., & Fujioka, T. (2023). Evaluating the potential of nanofiltration membranes for removing ammonium, nitrate, and nitrite in drinking water sources. Water Research, 244. https://doi.org/10.1016/j.watres.2023.120484

Roy, Y., Sharqawy, M. H., & Lienhard V., J. H. (2015). Modeling of Flat-Sheet and Spiral-Wound Nanofiltration Configurations and its Application in Seawater Nanofiltration. Journal of Membrane Science, 493, 360–372. https://doi.org/10.1016/j.memsci.2015.06.030

Roy, Y., Warsinger, D. M., & Lienhard, J. H. (2017). Effect of temperature on ion transport in nanofiltration membranes: Diffusion, convection and electromigration. Desalination, 420, 241–257. https://doi.org/10.1016/j.desal.2017.07.020

Saavedra, A., Valdés, H., Velásquez, J., & Hernández, S. (2024). Comparative Analysis of Donnan Steric Partitioning Pore Model and Dielectric Exclusion Applied to The Fractionation of Aqueous Saline Solutions through Nanofiltration. ChemEngineering, 8(2). https://doi.org/10.3390/chemengineering8020039

Shahgodari, S., Labanda, J., & Llorens, J. (2023). Experimental and Modeling Study of the Nanofiltration of Alcohol-Based Molecules and Amino Acids by Commercial Membranes. Membranes, 13(7). https://doi.org/10.3390/membranes13070631

Suhalim, N. S., Kasim, N., Mahmoudi, E., Shamsudin, I. J., Mohammad, A. W., Zuki, F. M., & Jamari, N. L. A. (2022). Rejection Mechanism of Ionic Solute Removal by Nanofiltration Membranes: An Overview. In Nanomaterials (Vol. 12, Issue 3). MDPI. https://doi.org/10.3390/nano12030437

Szymczyk, A., Lanteri, Y., & Fievet, P. (2009). Modelling the transport of asymmetric electrolytes through nanofiltration membranes. Desalination, 245(1–3), 396–407. https://doi.org/10.1016/j.desal.2009.02.003

Thabo, B., Okoli, B. J., Modise, S. J., & Nelana, S. (2021). Rejection capacity of nanofiltration membranes for nickel, copper, silver and palladium at various oxidation states. Membranes, 11(9). https://doi.org/10.3390/membranes11090653

Tonova, K., Lazarova, M., Dencheva-Zarkova, M., Paniovska, S., Tsibranska, I., Stanoev, V., Dzhonova, D., & Genova, J. (2020). Separation of glucose, other reducing sugars and phenolics from natural extract by nanofiltration: Effect of pressure and cross-flow velocity. Chemical Engineering Research and Design, 162, 107–116. https://doi.org/10.1016/j.cherd.2020.07.030

Yudhi Pamungkas, R., Nurkhamidah, S., Taufany, F., Altway, A., & Rahmawati, Y. (2025). Effect of Diethanolamine (DEA) Solvent Flow Rate on the CO2 Absorption-Desorption Process Using a Hollow Fiber Membrane Contactor. In Chemical Engineering Journal e (Vol. 22, Issue 3).

Downloads

Published

2025-12-12

How to Cite

Sugianto, M., Altway, A., & Susianto. (2025). Mechanistic Modeling of a Spiral-Wound Nanofiltration Module using DSPM-DE for High-Purity Salt Recovery from Desalination Brine. Eksergi, 23(1), 1–14. https://doi.org/10.31315/eksergi.v23i1.15947

Issue

Section

Artikel