Environmental Impacts Evaluation of Sorbitol Production from Glucose
DOI:
https://doi.org/10.31315/e.v0i0.2695Abstract
A life cycle assessment (LCA) has been performed on sorbitol production from glucose, which aims to quantify and evaluate the environmental impacts that produced from the process. SuperPro Designer software was employed to perform the process simulation, while SimaPro was used to quantify the LCA.
Potency of global warming, acidification, eutrophication, photochemical oxidants creation, abiotic depletion, and ozone layer depletion were evaluated. A gate-to-gate LCA study of sorbitol production showed that global warming potential (GWP) had the largest impact to environment with the value of 3.551 kg CO2 eq/kg sorbitol. Glucose and electricity consumption were known as two major contributors to GWP, and hydrogen reactor was the main consumer of electricity. The use of glucose were responsible for more than 50% of total environmental
impact in each category. Performing heat integration in sorbitol processing is highly recommended for gate-togate system to reduce energy demand, thus decreasing the environmental impacts. Therefore, this LCA study may be applied to perform a sustainable improvement on sorbitol production process.
Keywords: sorbitol; life cycle assessment; global warming potential
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License(CC BY SA 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Eksergi allows authors retain the copyright and full publishing rights without restrictions.