EVALUASI KONSTANTA PERSAMAAN KARAKTER PHOTOVOLTAIC TYPE MULTI KRISTAL DENGAN METODE HOOKE-JEEYES
DOI:
https://doi.org/10.31315/e.v10i1.7618Abstract
Persamaan karakter arus dan voltase (I-V) dari photovoltaik, mengandung beberapa konstanta, Persamaan ini dapat berlaku umum untuk meramalkan karakter (l-V) photovoltaic, apabila nilai-nilai konstanta diketahui. Penentuan nilai-nilai konstanta dilakukan berdasarkan dari data-data elsperimen yang dilakukan dengan variasi variabel yang berpengaruh. Nilai konstanta yang sesuai didapatkan dengan membandingkan data-hasil perhitungan'dengan data eksperimen menggunakan kaedah jumlah kuadrat kesalahan (SSE) minimum, proses ini dikenal sebagai optimasi (minimasi) persamaan nonlinier multi variabel. Pada tulisan ini akan dipaparkan optimasi regresi nonlinier multi variabel, dengan metoda pencarian langsung tanpa kendala (Hooke-Jebves method) dan algoritma maupun diagram alir program metode Hooke-Jeeves. Pemrograman
komputer dilakukan dengan bantuan bahasa program Scilab. Hasil optimasi diperoleh konstanta persamaan k1: 0.0065, k2= 0.006, k3=2858173 dan k4=12960. Persamaan model maternatik ini dengan konstanta tersebut dapat mewakili karakterist k photovoltaic type multikristal.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License(CC BY SA 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Eksergi allows authors retain the copyright and full publishing rights without restrictions.